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Abstract 
 
The	
  usual	
  formulation	
  of	
  quantum	
  mechanics	
  rests	
  on	
  elaborate	
  mathematical	
  constructs	
  
that	
  lack	
  any	
  intuitive	
  grounding.	
  One	
  may	
  therefore	
  wish	
  to	
  find	
  arguments	
  for	
  the	
  
rational	
  necessity	
  of	
  this	
  theory.	
  I	
  will	
  sketch	
  three	
  arguments	
  of	
  this	
  kind.	
  The	
  first	
  is	
  the	
  
proof,	
  given	
  in	
  1979	
  by	
  André	
  Lichnerowicz	
  and	
  Simone	
  Gutt,	
  that	
  every	
  one-­‐parameter	
  
continuous	
  deformation	
  of	
  the	
  Poisson	
  algebra	
  of	
  classical	
  mechanics	
  is	
  equivalent	
  to	
  the	
  
algebra	
  of	
  infinitesimal	
  evolutions	
  of	
  quantum	
  mechanics.	
  The	
  second	
  is	
  the	
  quantum	
  logic	
  
initiated	
  in	
  1936	
  by	
  John	
  von	
  Neumann	
  and	
  Garrett	
  Birkhoff,	
  which	
  purports	
  to	
  derive	
  the	
  
matrix-­‐density	
  representation	
  of	
  states	
  from	
  a	
  natural	
  logic	
  of	
  Yes-­‐No	
  empirical	
  questions.	
  
The	
  third,	
  dating	
  from	
  2001,	
  is	
  Lucien	
  Hardy's	
  simpler	
  derivation	
  of	
  this	
  representation	
  
from	
  "five	
  reasonable	
  axioms"	
  about	
  transition	
  probabilities	
  between	
  discrete	
  
measurement	
  outcomes.	
  I	
  will	
  compare	
  the	
  assumptions,	
  deductions,	
  and	
  conclusions	
  of	
  
these	
  arguments,	
  and	
  try	
  to	
  estimate	
  the	
  extent	
  to	
  which	
  they	
  establish	
  the	
  necessity	
  of	
  
quantum	
  mechanics.	
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Warning: This is only a rough draft of a forthcoming study, not ripe to be circulated or 

cited. The four sections can be read independently. Comments and criticisms are most 

welcome. 

 

 

Quantum mechanics is hard to swallow. It relies on elaborate mathematical constructs 

whose empirical relevance boggles the mind. Are their ways to make it more natural? In 

other words: Are there convincing arguments for the necessity of quantum mechanics? 

 The first section of this essay is devoted to two kinds of historical necessity of 

quantum mechanics, one driven by the analogy between classical and quantum theory, 

the other by the analogy between matter and light. The second section is devoted to a 

mathematical kind of necessity: the possibility of deriving quantum mechanics by 

deforming the Poisson algebra of classical mechanics. Around 1940, José Moyal and 

Hibrand Groenewold discovered that quantum mechanics admitted a phase-space 

formulation that increased its formal similarity with Hamiltonian mechanics: one just had 

to replace the Poisson bracket by the more complicated "Moyal bracket." In the late 

1970s, the mathematicians Jacques Vey, André Lichnerowicz, and Simone Gutt found 

that the latter bracket could be obtained by deforming the Poisson bracket and that this 

deformation was unique. This means that in a deep mathematical sense classical 

mechanics already contains quantum mechanics.  

 The two remaining sections of this essay deal with attempts to base quantum 

mechanics on axioms more natural than those of the standard textbook formulation. Since 

the invention of quantum mechanics, many different axiomatics have been proposed for 

quantum theory, with various motivations including mathematical rigor and 

completeness, conceptual and structural clarity, broader scope (for systems resisting 

standard quantization), deeper interpretive or ontological significance, physical 

transparency, and necessity. I only retain the axiomatics that have this last motivation. 

(This explains, for instance, why I do not discuss the C*-algebraic approach, despite its 

seductive generality and mathematical power.) Section 3 deals with the so-called 

"quantum logic," which purports to derive the basic structure of quantum mechanics from 

simple, natural requirements about the logic of Yes-No empirical questions. In this 

approach, which originated in John von Neumann's rigorous reformulation of quantum 

mechanics, the specificity of quantum phenomena is traced to the existence of 

incompatible questions. The last and fourth section is devoted to a more recent kind of 

axiomatics, based on natural constraints on a statistical-operational definition of physical 

states. In this approach, which originated in a seminal paper of 2001 by Lucien Hardy, 

discreteness, probability, and information are the most important notions. In the past few 

years, heavy weight has been placed on the information-theoretic meaning of the axioms, 

sometimes with reductionist intentions. 

 This essay does not directly address deeper interpretive questions about the nature 

of the quantum world. It is limited to arguments for the necessity of the basic predictive 



apparatus of quantum mechanics, although such arguments may suggest new interpretive 

insights and although some of their authors were motivated by deeper interpretive 

questions.
1
 

 

 

1. Historical necessity 
 

I suppose my reader to be somewhat familiar with the history of quantum theory.
2
 He or 

she may still wonder whether the main innovative steps of this history were in some 

sense necessary. The question is not easy to answer because the implied necessity may 

belong to different categories. In a first category, the novel elements are deduced from 

well-defined physico-mathematical principles, in a quasi-rational way. In a second 

category, the novel elements are induced from well-established empirical data (together 

with well-confirmed, lower-level theories). In a third category, they may result from the 

intractability or unavailability of alternative approaches. In a fourth and last category, 

they may be the resultant of psychological or social factors, implying for instance the 

authority of a leader. In a philosophical dream-world, the two first categories would be 

dominant. Needless to say that in the real world the first and second kinds of necessity 

are often contaminated by the third and fourth. Also, the distinction between deductive 

and inductive necessity can only be a loose one, because induction usually requires 

established principles, and because principles often have a partly empirical origin. 

 An additional difficulty results from the variability of the kind of necessity of a 

given innovation when a fine time-scale is used. Most frequently, the innovation is 

initiated by a single actor for reasons that have to do with his personal itinerary, his 

cultural immersion, and his psychological character. At this early stage, he may be the 

only one to regard his move as inductively or deductively necessary, while other actors 

may be skeptical and regard the move as arbitrary. At a later stage a critical debate 

usually occurs, at the end of which the majority of experts agree that the step must be 

taken for reasons that may vary from case to case: confirmation of the move by new 

empirical data, theoretical consolidation of the original deduction, availability of 

independent deductions that lead to the same result, or compatibility with independent, 

fruitful developments.
3
  

In most of the following discussion, I will judge the necessity of the innovative 

steps at the end of this second stage. I will not examine the nature of the first stage; for 

instance, I will not ask whether Bohr's familiarity with Harald Høffding's philosophy or 

Born's awareness of the anti-causal philosophies of the Weimar period inspired their most 

daring moves. At any rate, the closest approximations to inductive or deductive necessity 

are more likely to be found in the justification stage.
4
 

 The early twentieth-century conclusion that ordinary electrodynamics could not 

yield equilibrium for thermal radiation comes close to the ideal of deductive necessity. 

                                                 
1
 For a lucid justification of the constructive, axiomatic approach, see Grinbaum 2007. 

2
 For this purpose Darrigol 2009 should be sufficient. 

3
 These two stages are vaguely similar to Hans Reichenbach's distinction between context of discovery and 

context of justification.  
4
 Social constructivists would agree with me that this second stage is essential in stabilizing the basic 

constructs of science. However, their analysis of the stabilizing process tends to underestimate rational 

constrains or to reduce them to socially defined systems of beliefs. 



The lack of rigor in the implied deductions was compensated by the multiplicity and 

variety of derivations of the same result. Moreover, the status of one of these derivations, 

the Gibbsian one provided by Lorentz, rose with the conviction that Gibbs's ensembles 

correctly represented thermodynamic equilibrium despite the lack of a firm foundation.  

 The introduction of quantum discontinuity early in the twentieth century obeyed a 

weaker necessity of the inductive kind. Einstein's and Bohr's discrete quantization was 

the simplest way to account for Planck's blackbody law and for the spectrum of the 

hydrogen atom. Yet it was highly problematic for two reasons: it implied a non-classical 

selection among classically defined states, and it made it very difficult to imagine a 

plausible mechanism for the interaction between atoms and radiation. For the latter 

reason, Planck long preferred a division of phase space into cells of equal a priori 

probability. As is well known, in 1911 Paul Ehrenfest and Henri Poincaré proved that the 

canonical distribution of energy over resonators could not yield a finite energy for cavity 

radiation unless there was a finite energy threshold for the excitation of the resonators.
5
 

This proof is largely illusory, because it depends on an unwarranted extension of Gibbs's 

canonical distribution law to systems that no longer obey the laws of classical dynamics.
6
 

The true reason why Einstein's idea of a sharp quantization came to dominate over more 

timid attempts was the multiple, successful applications it had in the context of the Bohr-

Sommerfeld theory. 

 Similar comments can be made about Bohr's frequency rule. It is tempting to say 

that Bohr read the rule in the Balmer-Rydberg formula. In reality, this inference has the 

typical underdetermination of any inductive reasoning: the hydrogen spectrum can be 

derived from the combination of the frequency rule only if when this rule is combine with 

a few other assumptions including the existence of stationary states and the truth of the 

laws of wave optics for the emitted radiation. Bohr himself did not believe in the 

generality of the frequency rule until he became aware of Sommerfeld's and Einstein's 

contributions to his theory in 1916. The assumption of stationary states and the frequency 

rule gained credibility and became Bohr's two "postulates" when their simultaneous 

application yielded correct results in an increasing variety of situations involving spectra, 

atomic structure, and atomic collisions. This happened despite the evident incompleteness 

of the theory (it left the radiation mechanism in the dark) and despite its reliance on 

classical concepts belonging to an incompatible electrodynamics.  

The very definition of stationary states and the statement of the frequency rule 

required classical concepts: energy and frequency. Bohr struggled to show that these 

concepts could be defined in the quantum realm through a limited use of classical theory 

that did not contradict the quantum postulates. Most important, his correspondence 

principle pointed to a deep formal analogy between classical electrodynamics and the 

evolving quantum theory. He hoped that in the long run this analogy would project the 

consistency of the former theory over the latter. The quantum postulates would remain 

intact in this process. 

                                                 
5
 Cf. Klein 1970a; CD, p. 53. 

6
 In his statistical mechanics, Gibbs assumed the validity of Hamiltonian dynamics. Although Einstein did 

not in his own statistical mechanics, he still assumed continuous evolution, invariance of the volume 

element in phase space, and some weak ergodicity. In the 1910s, there already were reasons to doubt the 

validity of any of these requirements in the case of quantum systems. 



 Although Bohr reached the correspondence principle by analogy with classical 

electrodynamics, he insisted on the formal character of this analogy and emphasized the 

contrast between the quantum postulates and the continuity of classical radiation 

processes. In order to judge the necessity of this principle, one must first be aware that in 

Bohr's original view this principle was a relation between the periodicity properties of the 

motion in stationary states (whether or not this motion obeyed classical mechanics) and 

the properties of the emitted radiation. There were three arguments in favor of the 

necessity of this principle: it warranted the asymptotic agreement between the empirical 

predictions of classical and quantum theory; in the deductive mode, it provided the 

selection rules and good estimates of the intensities of some spectral lines; through Bohr's 

more obscure appeal to the inductive mode, it led to a plausible classification of elements.  

 The magic of the correspondence principle did not catch well outside 

Copenhagen. By 1924, the idea of well-defined orbits in the atom, which the principle 

seemed to require, was much under criticism. Even Bohr came to reject this idea in early 

1925. Yet in Bohr's circle the confidence never died that correct quantum-theoretical 

relations could be extracted by analogy with classical multiperiodic systems, whether or 

not the motion of such systems truly represented the motion in stationary states. This 

confidence even increased in 1923-24 when Kramers, Born, and Heisenberg managed to 

translate some classical relations into what they (correctly!) believed to be exact 

quantum-mechanical relations. One reason for this belief was the empirical relevance of 

these relations. Another was the automatic agreement between the large-quantum-number 

limit of these relations and the corresponding classical relations. Still another was the 

fact, first emphasized by Kramers, that these relations only involved the basic quantities 

entering Bohr's postulates and no longer referred to the suspicious orbits. In the spring of 

1925, Heisenberg's conviction that he had discovered quantum mechanics resulted from 

these three qualities of the symbolic translation, together with the consistency and 

completeness of the resulting computational scheme. 

 Heisenberg's quantum mechanics may be regarded as a necessary consequence of 

Bohr's two postulates (discrete stationary states, and frequency rule) and of a rule for 

translating the equations of motion of a classical periodic system (expressed in Fourier 

form) into relations between "quantum amplitudes" directly related to the observable 

quantities that enter the two quantum postulates. This rule itself derived from the 

correspondence principle, whose plausibility rested on the asymptotic validity of classical 

electrodynamics and on successful applications (of a different kind) in the earlier 

quantum theory. One might then wonder why quantum mechanics was not discovered 

earlier, say in 1917, when Bohr already had the two postulates as the pillars of his theory 

and the correspondence principle as a constructive tool. One reason is that before 1924 no 

one banished orbital parameters from quantum theory. Another is that before Heisenberg 

no one guessed that the "correspondence" counterparts of the Fourier components of a 

periodic classical motion would completely characterize the quantum-mechanical motion 

just as these components themselves sufficed to define the classical motion. 

 On the side of wave mechanics, the story began with de Broglie's extension of the 

wave-particle duality to particles of finite mass. Although the extension was natural from 

a formal, relativistic point of view, it could easily pass for crazy speculation. The 

receptivity of Langevin, Einstein, and Schrödinger depended on a few favorable 

circumstances. Firstly, the lightquantum, which provided the basis for de Broglie's 



extension, was gaining momentum (literally and metaphorically). Secondly, de Broglie's 

successfully applied his theory to a wide spectrum of problems including the derivation 

of the Bohr-Sommerfeld rule, the analogy between Fermat's and Maupertuis's principles, 

and the derivation of Planck's quantum cells (for the statistics of gas molecules). Thirdly, 

Einstein retrieved the de Broglie waves through a different route: in 1925 he designed a 

quantum theory of gas degeneracy by analogy with Bose's corpuscular derivation of 

Planck's law, and found that the theoretical fluctuation of his quantum gas implied wave 

behavior in conformity with de Broglie's relations. Being also involved in quantum-gas 

theory, Schrödinger measured the force of Einstein's reasoning.
7
 

 It would nonetheless be excessive to speak of a deductive or inductive necessity 

of de Broglie's waves. In 1925, they still were a bold assumption without direct 

experimental counterpart.
8
 De Broglie was himself shy in his suggestion of electron 

diffraction.
 9

 A stronger necessity can be seen in the deduction of the Schrödinger 

equation. De Broglie's idea that the classical dynamics of a particle should be to wave 

mechanics what geometrical optics is to wave optics automatically leads to the time-

independent Schrödinger equation in the non-relativistic limit. Moreover, the success of 

this equation in determining the stationary states of the hydrogen atom could hardly be 

regarded as pure chance. One may still be perplexed by the coincidence that made the 

Schrödinger equation appear just a few months after Heisenberg's quantum mechanics. 

There is little to justify this timing besides the contemporary willingness to renounce 

electronic orbits in atoms. 

 A last question of special philosophical interest is the necessity of the now 

standard probabilistic interpretation of the formalism of quantum mechanics or wave 

mechanics. In Dirac's quantum-mechanical approach, the starting point is the allegation 

that for a sharply defined value of the energy (corresponding to a stationary state) the 

conjugate phase is uniformly spread. The ensuing deduction of the whole interpretation 

only requires the transformation properties of the fundamental equations of quantum 

mechanics (invariance by unitary transformations). The necessity of this interpretation 

should therefore be measured by the necessity of the starting point. Dirac justified his 

starting point through the correspondence principle, arguing that in the large quantum-

number limit a stationary state may be represented by a revolving electron whose phase 

varies uniformly in time. Thus, Dirac was willing to admit that energy and phase retained 

a meaning in quantum mechanics. More generally, he assumed that any dynamical 

variable and its canonical conjugate retained a meaning in quantum mechanics although it 

was impossible to have initial conditions in which both variables were exactly 

determined. There is no evident necessity for this persisting relevance of classical 

concepts in the quantum context. Nevertheless, the harmony of Dirac's statistical 

interpretation with the transformation properties of quantum mechanics pleaded for the 

uniqueness of this interpretation. 

 In the matter-wave approach, Born's probabilistic interpretation of scattered 

electron waves seems unavoidable. Indeed the naïve interpretation of the wave as dilute 

matter would imply that only a fraction of an electron is detected at a given angle. Any 

                                                 
7
 Einstein 1924, 1925a, 1925b. Cf. CD, pp. 248-249; HD, vol. 1, chap. 5.3; Forman 1969; Hanle 1977. 

8
 Walther Elsasser nonetheless tried to relate de Broglie waves to anomalies observed in Göttingen for the 

scattering of low-energy electrons. Cf. Born 1926b; CD, pp. 249-251; Russo 1981. 
9
 The suggestion only appears in Broglie 1923b, p. 549, not in the Thèse (Broglie 1924). 



attempt to save the naïve view by building wave packets of very small size would fail 

because of the spreading of the wave packets. Similarly but less stringently, Dirac's 

statistical interpretation of the perturbed Schrödinger-wave of an irradiated atom seems to 

result from the nature of the problem, granted that long after the interaction the atom can 

only be found in a stationary state. Lastly, it is possible to show that Born's probabilistic 

interpretation of scattered waves leads to the full statistical interpretation of wave 

mechanics through a proper idealization of the measuring process [proof omitted]. One is 

left with a feeling of the unavoidability of the standard statistical interpretation of wave 

or matrix mechanics. Its ability to correctly represent the outcome of experiments in the 

quantum regime has rarely been contested. The apple of later discord rather was the 

possibility of defining or measuring physical quantities more than quantum mechanics 

allows.  

To sum up, the historical genesis of quantum mechanics can be regarded as a 

series of bold, imaginative, but firmly supported steps. The first two constructive steps, 

the introduction of discrete stationary states and the frequency rule, were taken with full 

awareness of their problematic character and they were later consolidated by multiple 

successes of their combined application. These assumptions have counterparts in modern 

quantum mechanics, although stationary states are no longer regarded as the only 

possible states. In contrast, the auxiliary reliance on classical concepts posed more and 

more problems and led to the severe crisis of 1924-25. In the middle of this crisis, 

Heisenberg's invention of a first form of quantum mechanics strikingly confirmed Bohr's 

idea that the correspondence principle promised a "rational generalization" of classical 

electrodynamics. The contemporary but largely independent invention of a closely related 

wave mechanics strengthens the air of inevitability of quantum mechanics. The statistical 

interpretation of this theory largely derives from its mathematical structure, combined 

with a touch of correspondence. 

Rational arguments from the history of quantum mechanics of course lack rigor 

and purity. They rely on arbitrary idealizations and they are often contaminated by appeal 

to experimental knowledge. These arguments nevertheless suggest natural assumptions 

from which quantum mechanics might follow deductively.   

 

 

2. The deformation of classical mechanics 

 

One suggestion we can take from history is that quantum mechanics should be some sort 

of "rational generalization" (as Bohr put it) of classical mechanics. The standard recipe 

for building a quantum mechanical Hamiltonian, namely, replacing canonical pairs with 

non-commuting operators, does not meet anyone's spontaneous notion of rationality. 

Nevertheless, Weyl and Wigner independently discovered reciprocal, unambiguous ways 

to associate an operators with functions in ordinary phase space. Some fifteen years later, 

Moyal and Groenewold used this correspondence to reformulate quantum mechanics in 

phase space. In particular they translated the products of two operators into the "Moyal 

product" of the corresponding functions in phase space, and the commutator of two 

operators into a generalization of the Poisson bracket of two functions in phase space. In 

the 1970s, mathematical studies of deformations of the classical Poisson algebra of 

infinitesimal evolutions done by André Lichnerowicz's group, Jacques Vey, and Simone 



Gutt led to a proof that the Moyal bracket was the unique continuous deformation of the 

Poisson bracket. This section is a historico-critical analysis of this astonishing discovery, 

beginning with the earliest conceptions of quantization and ending with comments on the 

sort of necessity it implies for quantum mechanics. 

 

 

Early connections between classical and quantum mechanics 

 

The history of quantum mechanics, the correspondence principle, and the Bohrian 

interpretation of this theory in terms of classical observation all suggest an intimate 

connection between classical and quantum mechanics. In the simple case for which the 

classical Hamiltonian function has the form 
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the quantum-mechanical Hamiltonian has the same form 
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and the equation of motions in the Heisenberg picture still are Hamilton's equations 
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The only formal difference hinges on the commutation rule 
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 In the Schrödinger picture, the Schrödinger equation 
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is the only first-order wave equation whose eikonal approximation leads to the Hamilton-

Jacobi equation  
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for the phase S of the waves. 

 There is much boldness in either way of generating the quantum-mechanical. One 

way introduces non-commuting quantities; the other turns particles into waves. No 

classical physicist would have taken the resulting equations seriously. Yet the formal-

mathematical kinship between classical and quantum mechanics goes even deeper than 

suggested by their historical constructions. In 1925, Dirac noted that Heisenberg's 

equations, once rewritten under the form 

i],[ pq ,   ],)[/( gHg  i , 

were the exact counterpart of the classical equations 
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in which the Poisson bracket of two functions f and g of q and p is defined as 
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That is to say, the quantum-mechanical equations can be obtained through the simple 

correspondence 

],[)(},{ 1 i . 

In mathematical terms, the Poisson algebra of classical Hamiltonian infinitesimal 

evolutions seems to be mapped into the Poisson algebra of quantum Hamiltonian 

infinitesimal evolutions. In his earliest work on quantum mechanics, Dirac emphasized 

this correspondence and used it abundantly to adapt classical methods of resolution to the 

quantum domain.
10

  

 Unfortunately, the correspondence between the two theories is not as simple as 

Dirac wished. In December 1925, Heisenberg warned Dirac that the alleged 

correspondence between Poisson brackets and commutators could not hold for every 

quantity. For instance, if ],[ pq  matches },{ pqi  then ],[ 22
pq cannot match },{ 22 pqi  

because 

)(2],[],[],[],[],[],[],[ 2222
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whereas
11

 qppq 4},{ 22  . 

 

 

Weyl and Wigner 

 

This counterexample brings forth a more general difficulty in defining the quantum-

mechanical operator g corresponding to a given classical quantity ).,( pqg Whenever the 

power series-development of the g function involves terms of the form nmqp , there is an 

ambiguity in the quantum translation. For instance, should pq  translate  into pq , qp , or 

)(
2

1 qppq  ?  In 1927, Hermann Weyl approached this question from a group-theoretical 

point of view. In this context, the Hermitic operators q and p, such that i],[ pq , 

are the generators of the Lie algebra of the possible unitary evolutions of the quantum 

system. More exactly, any such evolution can be obtained by taking the exponential of a 

linear combination )(i pq   with real coefficients  and  . Moreover, any Hermitic 

operator g of the Lie algebra can be obtained as a superposition 


   dde),(~ )(i pq

g g , 

with  ),(~),(*~   gg . 

Weyl introduced this decomposition in analogy with Fourier analysis, and because he 

wanted to circumvent the unboundedness of the operators p and q of quantum mechanics 

(which is an obstacle to its Hilbert-space representation).
12

 

 The condition ),(~),(*~   gg  implies that the ordinary Fourier transform 

of the coefficients ),(~ g , 


   dde),(~),( )(i pqgpqg  

                                                 
10

 Dirac 1925. 
11

 Ref. in CQ 
12

 Weyl 1927, pp. 27-28. 



is a real function of the real variables q and p. Weyl naturally interpreted this function as 

the classical quantity corresponding to the quantum quantity g. He thus had in hand a 

unique, group-theoretically sound way of associating a quantum operator to a classical 

quantity. In compact form, the recipe reads: 


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This rule implies the complete symetrization of monomes. For instance,
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 Five years later, Eugen Wigner addressed the seemingly unrelated question of the 

representation of quantum states in phase space. His aim was to devise a quasi-classical 

approximation strategy for the quantum statistical averages 

)Tr(ρgg  ,    with )e(Tr/e HH
ρ

  . 

In order to ease the comparison, with the classical statistical average
14

 

 pqpqgpqg dd),(),( , 

he associated a phase-space distribution ),( pq  to any density operator ρ according to 

the formula  

  ''e'd2),( /'i2 qqqqqpq pq
ρ

 , 

and showed that for any quantity g that is a sum of a function of p and a function of q, the 

quantum average could be replaced with a phase-space average over this distribution:
15

 

 pqpqgpq dd),(),()(Tr ρg . 

In the case of a pure state ρ , the associated phase-space distribution reads
16
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 Wigner did not tell how he had arrived at this miraculous formula. He only 

indicated that Leo Szilard and himself had obtained it a few years later in another context. 

Possibly, the two friends had been looking for a phase-space formulation of quantum 

mechanics, in an attempt to reduce quantum-mechanical probabilities to ordinary 

probabilities. Wigner's paper indeed contains the phase-space counterpart of the 

Schrödinger equation:  
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 Weyl (1927, pp. 17) gave the combination rules for the functions f
~

 and g~ . So did too Neumann (1931), 

who used the Weyl-Fourier analysis of Hermitic operators in a proof of the uniqueness of the Schrödinger 

representation of the operators p and q. 
14

 For the sake of simplicity, I only give the formulas in the case of one degree of freedom. 
15

 As we will see in a moment, this property in fact holds for any operator g. 
16

 Wigner 1932, pp. 750, 753. 



This is the quantum-theoretical generalization of the classical equation of evolution of a 

density in phase-space: 

pq
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t 


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Wigner did not fail to note that the quantum-theoretical density  , unlike its classical 

approximation, could take negative values and therefore could not be interpreted as a true 

probability:
17

 

 

Of course [the density ),( pq ] cannot be really interpreted as the simultaneous 

probability for coordinates and momenta, as it is clear from the fact that it may 

take negative values. But of course this must not hinder the use of it in 

calculations as an auxiliary function which obeys many relations we would expect 

from such a probability. 

  

 

Moyal, Dirac, and Groenewold 

 

On the one hand, Weyl ascribed an operator to any function in phase-space. On the other, 

Wigner ascribed a function in phase-space to any operator. Neither of them realized that 

the implied correspondences were the inverse of each other, presumably because the 

context and the relevant kind of operator differed. Whereas Weyl wanted to construct the 

Hermitic operators of quantum mechanics from functions in phase-space, Wigner sought 

a phase-space representation of the density operators or wave functions of quantum 

mechanics. Some ten years elapsed before two marginal theorists, José Moyal and 

Hilbrand Groenewold, discovered the Weyl-Wigner connection in systematic 

explorations of the phase-space representation of quantum mechanics.
18

  

 Around 1940, the electrical engineer Moyal, discovered that the average of any 

operator could be represented as an ordinary average in phase space, if only the q's and 

p's were properly ordered in the expression of the operator. He took this as an indication 

that joint probability distributions in q and p could adequately represent quantum 

evolution, despite the non-positive character of these distributions. Paul Dirac opposed 

this idea and blocked its publication. In contrast, the statistician Maurice Bartlett 

supported Moyal and helped him develop his theory. In 1944, Moyal approached Dirac a 

second time. The reaction was again negative. Dirac argued that phase-space averages 

generally failed to represent quantum averages, because for instance the phase-space 

average of pq must be the same as the average of qp, whereas the quantum averages of 

pq and qp differ by i . As Moyal explained in his reply, Dirac had misread him, because 

in Moyal's theory the two kinds of average only agree if the quantum operator is ordered 

according to Weyl's prescription. Thus, in Dirac's example, the theory only requires that 

the phase-space average of pq should be equal to the quantum average of )(
2
1 qppq  .

19
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 Dirac then raised a more serious objection. He noted that in the case of a 

harmonic oscillator characterized by the Hamiltonian 22 qpH  , Moyal's theory 

implied a non-vanishing quadratic energy fluctuation in any eigenstate, against the 

standard view that the energy is sharply defined in such states. Indeed, the Weyl 

quantization of 2H  and the commutation rule ipqqp  together lead to
20

 

4/)()( 2222222  qpqp  , 

so that  

4/4/ 222222   HHHH . 

 The source of this paradox is the naïve idea that the quantum-theoretical 

expectation value of any physical quantity is obtained by Weyl-quantizing its classical 

expression ),( pqg  and forming )Tr(ρgg  . This prescription, or the equivalent 

identification of the Wigner phase average g  with the expectation value of g, is 

generally incompatible with the postulate of sharply defined values of a quantity in its 

eigenstates. This incompatibility, of which Dirac's paradox is an illustration, can be 

avoided by interpreting the quantum expression g  as the expectation value of the 

classical quantity obtained in replacing the q  and p in the expression of g by ordinary 

numbers.
21

   

 Moyal did not consider this subterfuge. He accepted Dirac's criticism, and 

published his theory in 1949 with a warning that its statistical prediction did not entirely 

agree with those of standard quantum mechanics. He even suggested experimental tests 

of the differences. In 1946, the Dutch theoretical physicist Hilbrand Groenewold, who 

did not have Dirac on his way, had already published a systematic study of hidden-

variable theories which also contained a phase-space representation of quantum 

mechanics. Whereas Moyal interpreted this representation as a plausible, if imperfect, 

statistic-deterministic interpretation of this theory, Groenewold used it as a means to 

argue the impossibility of such an interpretation. Both theorists nevertheless obtained 

very nearly the same formal apparatus. They were both aware of Weyl quantization, and 

Groenewold  knew about the Wigner function. Bartlett and Moyal obtained this function 

by inverting the Weyl quantization.
22

 

 Bartlett became aware of Wigner's contribution in the summer of 1945. Moyal 

immediately told Dirac that his brother in law had anticipated the phase-space 

representation. Dirac remained unimpressed. To his earlier objections, he added that the 

phase-space representation of quantum mechanics, unlike that of classical mechanics 

depended on the choice of the canonical pair ),( pq . He commented: 
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If you depart so much from the usual classical ideas is there any point in trying to 

fit things into a classical framework? What advantages does your system have 

over the usual statistical interpretation of quantum mechanics? Any results that 

you get from your system must either conform to the usual quantum mechanics or 

else be incorrect. I think your kind of work would be valuable only if you can put 

it in a very neat form. 

 

In the eyes of modern adepts of the phase-space representation, the formal apparatus of 

Moyal's published memoir is clear and elegant, and its notation is more transparent than 

Groenewold's. This apparatus will now be given in modern notation.
23

 

 

 

Quantum mechanics in phase space 

 

If ),(~ g denotes the inverse Fourier transform of the classical quantity ),( pqg , the 

Weyl quantization formula implies 


   ddq"e'),(~"' )i( pq

g qgqq . 

Using the Weyl identity
24

 
 )2/(iii]i,(1/2)[iii)i( eeeeeee pqpqpqpq   , 

we have 

)/"/'(eeq"e' 'i)2/(i)i(  qqq q   pq , 

and 

 






 
  p

qq
gp

h
qqgqq qqpqq ,

2

"'
ed

1
de)/'/",(~"' /)"'(i)"')(2/(i   

g . 

Changing the variables to 2/)"'( qqq   and 2/)'"( qqq  , and inverting the Fourier 

transform yields the Wigner formula 

    qqqqqpqg
pq

g
/i2

ed2),( . 

This means that the Wigner formula it the exact inverse of the Weyl quantization 

formula. There is a one-to-one correspondence between distributions in phase-space and 

quantum operators.  

 As Moyal and Groenewold both realized, the Weyl-Wigner correspondence is not 

unique. However, it enjoys two important properties: it yields real (though non-positive) 

values for the phase-space distributions g associated to Hermitic operators (physical 

quantities or density matrices); and it translates quantum averages into ordinary phase-

space averages: 

 pqpqgpq dd),(),()(Tr ρg . 
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More generally, for any two real functions ),( pqf  and ),( pqg  and for the associated 

Weyl operators f  and g,  

 pqpqgpqf dd),(),()(Tr fg .  

[proof omitted]. 

 In order to translate quantum-mechanical equations into phase-space equations, it 

is convenient to introduce the star product gf   whose associated operator is the 

operator fg. In the symbolic notation used by Groenewald and Moyal, This definition 

yields  

gfgf qppq ))(2/i(
e







, 

in which the arrows above the derivatives indicate on which side they are operating 

[proof omitted].
25

 

 To first order in  , this formula yields 

}.,){2/())(2/( gfifgfggfifggf qppq    

For the skewsymmetric part, which is the phase-space counterpart of the commutator 

],[ gf , we have 

},{i gffggf  . 

The quantum-mechanical equation of motion, 

],,[i ρHρ   

translates into 

}},{{  H , 

wherein the Moyal bracket is defined by  

}},{{i gffggf  . 

When   reaches zero, the Moyal bracket reduces to the Poisson brackets and the 

classical of motion turns into the classical equation of motion },{  H . 

 These considerations give a precise meaning to the correspondence between 

commutators and Poisson brackets. Quantum and classical mechanics now being both 

represented in phase space, it becomes clear that the Lie algebra of quantum evolutions is 

a continuous deformation of the Lie algebra of classical evolutions. As Wigner 

anticipated, the semi-classical limit of quantum mechanics is better understood. The 

quantum nature of processes can be appreciated by identifying the (small) domains in 

which the phase-space density is negative. This is why the Wigner function is so popular 

among physicists who try to understand the transition from quantum to classical 

behavior, for instance the decoherence process and Schrödinger cats.
26

 

 

 

Equivalence of all deformations of the Poisson brackets 

 

The existence of the Moyal bracket implies that the basic structure of quantum mechanics 

can be obtained by deforming the Lie algebra of Hamiltonian mechanics. This result 

confirms Dirac's intuition that the two theories are not so remote from each other, at least 
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from a mathematical point of view. A few mathematicians established a much stronger 

connection in the 1970s. 

 The relevant concept of deformation is the one introduced by Murray 

Gerstenhaber in 1964. Accordingly, a deformed Poisson bracket is a C  bilinear 

alternate function },{ gf  of the phase-space functions f and g and of the parameter   

defining a Lie Algebra (satisfying the Jacobi identity) in the space of phase-space 

functions and such that 0},{ gf  is the usual Poisson bracket. In 1874, André 

Lichnerowicz and his collaborators Moshé Flato and Daniel Sternheimer discovered non-

trivial first-order differential deformations of the Poisson bracket on curved symplectic 

manifolds. All such deformations are trivial in the flat n2
R  case which is the most 

commonly encountered in Physics.
27

 

 The following year, Jacques Vey proved the existence of non-trivial deformations 

of infinite differential order always existed when the third Betti number of the manifold 

vanished. In the flat n2
R  case, Vey's deformed bracket is identical to the Moyal blacket. 

The Lichnerowicz group soon noted this coincidence. Following a suggestion by Flato, 

they conceived a new concept of quantization based on deforming the Poisson algebra:  

 

These developments encourage attempts to view quantum mechanics as a theory 

of functions or distributions on phase space, with deformed products and brackets. 

We suggest that quantization be understood as a deformation of the structure of 

the algebra of classical observables, rather than as a radical change in the nature 

of the observables.  

 

In particular, Flato, Lichnerowicz, and Sternheimer hoped to help theoretical physicists 

quantizing the constrained Hamiltonian systems that occur in some quantum field 

theories. Most interestingly, in 1979 Lichnerowicz and Simone Gutt established that all 

deformations of the Poisson bracket were mutually equivalent on symplectic manifolds 

for which the second Betti number vanishes. In the flat n2
R case, which is most 

commonly encountered in physics, all deformations are equivalent to the Moyal 

bracket.
28

  

 The equivalence of two deformed brackets },{ gf  and }',{ gf  is here defined as 

the existence of a differential operator 







1

Id
s

s

sTT   

such that 

 },{}',{ TgTfgfT   

for any pair f, g of phase-functions. This equivalence evidently preserves the equation of 

motion 
 },{  H . In addition, the equivalence  

TgTfgfT  )'(  
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for associated star product preserves the possibility of translating this equation in operator 

language. Indeed if we replace the Weyl transform 


   dde),(~)( )i( pq

g ggW  

with the transform 


   dd),(

~
e),(~)()(' )i( TgTgWgW pq , 

we have  

)'(')]([')()()()(')(' 1 gfWTgTfTWTgTfWTgWTfWgWfW   . 

Thus, the T-equivalence amounts to an alternative ordering of the quantum operators.
29

  

 Lichnerowicz's and Gutt's proofs of the equivalence of all star products or of all 

deformations of the Poisson bracket when the second Betti number vanishes are based on 

a powerful theorem by Vey regarding the Hochschild cohomology induced by the star 

product or regarding the Chevalley cohomology induced by the bracket. This result 

having important bearing on the question of the necessity of quantum mechanics, I will 

give an elementary proof in the case of a single degree of freedom (one q and one p).
30

  

[proof omitted]  

 

 

Deformation and necessity 

 

The equivalence of all deformations of the Poisson bracket is a highly remarkable result, 

for it conveys to quantum mechanics a deep mathematical necessity: the generating 

algebra of this theory is, up to an isomorphism, the only possible deformation of the Lie 

algebra of the infinitesimal evolutions of Hamiltonian mechanics. So to say, quantum 

mechanics is implicitly contained in classical mechanics. Recent results by Maurice de 

Gosson confirm this genetic relationship. In particular, Heisenberg's uncertainty relation 

can be given a meaning in classical mechanics: there exists a phase-space distribution for 

which this relation is compatible with the Hamiltonian flow.
31

 A more spectacular result 

concerns the relation between the group of Hamiltonian evolutions in phase-space and the 

group of unitary evolutions through Schrödinger's equations. For quadratic Hamiltonians, 

mathematicians have known for some time that the covering group of the former group is 

identical with the latter. In 2011 Gosson and Basil Hiley proved that for an arbitrary 

Hamiltonian there still is a one-to-one correspondence between the two kinds of 

evolution:
32
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In this way we have shown that the mathematical formalism of the theory of 

Schrödinger's equation is already present in classical mechanics, and is in fact a 

reformulation of Hamiltonian dynamics in terms of operators. 

 

  

 Gosson and Hiley warned their reader against overinterpreting their claims: 

 

We are not claiming that we are deriving quantum mechanics from classical 

mechanics; what we are doing is the following: knowing that quantum mechanics 

exists, we show that the mathematical formulation of quantum mechanics in its 

Schrödinger formulation lies within Hamiltonian mechanics. This does not imply 

that quantum mechanics—as a physical theory—can be reduced to classical 

mechanics. 

 

Similary, Sternheimer has warned against confusing mathematical with physical results:  

 

A word of caution may be needed here. It is possible to intellectually imagine new 

physical theories by deforming existing ones ... Nevertheless such intellectual 

constructs, even if they are beautiful mathematical theories, need to be somehow 

confronted with physical reality in order to be taken seriously in physics. So some 

physical intuition is still needed when using deformation theory in physics.  

 

Surely, proofs that classical mechanics, qua mathematical theory, implicitly contains the 

mathematical apparatus of quantum mechanics do not imply that this apparatus can be 

interpreted in a physically meaningful manner. Only a Diracian belief that every beautiful 

mathematics should someday find an application in the world could prompt us to think 

so. It remains true, however, that quantum mechanics has a striking kind of mathematical 

necessity, or perhaps even a transcendental necessity if one shares Poincaré's belief that 

the Lie group structure implied in the mathematical definition of the deformed dynamics 

is a necessary form of understanding.
33

 

 

 

 

3. Quantum logic 

 

An older way of showing the necessity of quantum mechanics is to seek operational 

reasons for the strange algebra of quantum mechanical observables. The basic idea, 

introduced by John von Neumann in 1932, is to examine the consequences of the possible 

incompatibility of measurements performed on a physical system. As every measurement 

can be regarded as the answer to a series of (compatible) Yes-No questions, the problem 

boils down to characterizing formal extensions of ordinary (Boolean) logic to 

propositions whose coordination and disjunction is not always defined. We will first see 

how Neumann and Garrett Birkhoff developed this idea in a powerful study of 1936. 

Essentially, they proved that simple natural assumptions for the lattice of propositions 

made it isomorphic with the lattice of subspaces of a generalized Hilbert space (in the 
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case of finite dimension). We will then see how later contributors to quantum logic, 

especially Constantin Piron in Geneva and George Mackey at Harvard, improved on this 

pioneering study by consolidating its operational foundation, by extended it to infinite 

dimension, and by deriving the quantum-mechanical description of states and evolutions.   

 

 

From Neumann's spectral theorem to a new logic 

 

John von Neumann invented the "logic of quantum mechanics" in the early 1830s, while 

working on an appropriate mathematical foundation for quantum mechanics. The two 

pillars of this foundation were the complex Hilbert space of infinite dimension and the 

spectral theorem for self-adjoint operators in this space. For finite dimension (N), it had 

long been known that every Hermitian matrix H admits a sequence of mutually 

orthogonal eigenvectors N ,...,, 21  and a sequence of eigenvalues N ,....,, 21  such 

that nnnH   . In the general (possibly degenerate) case, several eigenvectors may 

correspond to the same eigenvalue and a given eigenvalue i  defines a linear subspace 

iE  that can have any dimension from 1 to N. This is why Hilbert preferred a more 

intrinsic version of the spectral theorem according to which Hermitian operators with a 

number I of distinct eigenvalues admit the spectral decomposition  





I

i

iiPH
1

 , 

where iP  is the orthogonal projector on the subspace iE . These projectors satisfy ii PP 2 ; 

they are Hermitian operators with the eigenvalues 0 and 1; and the associated subspaces 

are mutually orthogonal. The theorem is easily generalized to bounded operators in an 

infinite-dimensional Hilbert space.
34

 

 In quantum mechanics, the operators representing physical quantities are not 

bounded and they are not even defined in the whole Hilbert space. For instance the 

momentum operator,  i , when applied to a normalized wave function, may lead to a 

wave function of infinite norm, and its eigenfunctions are plane waves that do not belong 

to the Hilbert space. Moreover, the set of eigenvalues is not always discrete; it may be 

continuous or mixed. This is why Neumann generalized the notion of Hermitian operator 

into that of self-adjoint ("hypermaximal") operator, for which the domain of definition is 

only required to be dense in the Hilbert space and for which the usual relation of 

conjugation 


  HH  holds. He then showed that Hilbert's form of the 

spectral theorem lent itself to a generalization in which such operators admit the spectral 

decomposition 





  dPH , 

the "spectral measure" dP  being defined so that for any measurable subset  of R, the 

integral 


 


 dPP  is an orthogonal projector. This measure is such that the subspaces 
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associated with the projectors P  and 'P  are orthogonal whenever the subsets   and '  

are disjoint.
35

  

 The projectors P were the basis of Neumann's statistical interpretation of 

quantum formalism. He regarded them as observables with the expectation values 0 and 

1. The value 1 corresponds to states for which the value of the observable H belongs to 

the subset , and the value 0 to states for which the value of H belongs to the 

complementary subset. In logical terms, the projector P  is associated with the bipolar 

proposition: "The value of the observable H belongs to the subset  ." In his influential 

Mathematische Grundlagen der Quantenmechanik of 1932, Neumann commented:
36

 

 

The relation between the projectors and the properties of a physical system allows 

for a sort of logical calculus [eine Art Logikkalkül] with these projectors. 

However, in contrast with the calculus of ordinary logic, this calculus is enlarged 

by the concept of "simultaneous decidability" [gleichzeitige Entscheidbarkeit] that 

is characteristic of quantum mechanics. 

 

 

Birkhoff and Neumann's proposition calculus  

 

Neumann and Garret Birkhoff developed this new "sort of logical calculus" or 

"proposition calculus" in a brilliant memoir of 1936. The basic idea is to associate every 

proposition a about the state of a physical system with the invariant subspace A of an 

associated projector. The relation "a implies b" is identified with the inclusion of the 

associated subspaces, the generalized conjunction "meet of a and b" with the intersection 

of the associated subspaces, the general disjunction "join of a and b" with the linear sum 

of the associated subspaces, the negation of a with the orthogonal complement of the 

associated subspace, the always false proposition "0" with the empty subspace, and the 

always true proposition "1" with the entire Hilbert space H. In symbols, we have 

 

ba   ba   ba  a  0 1 

BA  BA  BA  A    H 

 

The relation ba   is a relation of partial order; the meet ba   is the highest lower bound 

of a and b with respect to this relation; the join ba is the smallest higher bound of a 

and b. Thus, the set of propositions is what mathematicians call a lattice. This lattice is 

"orthocomplemented," namely: it has a minimal element 0 and a maximal element 1; and 

to every a corresponds a complement a  satisfying aa  , 0 aa , 1 aa ; if ba   

then ab  .
37

  

 The usual operations of logic share the orthocomplemented lattice structure. In 

addition, they enjoy the property of distributivity:  
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)()()( cabacba    and  )()()( cabacba  , 

which makes the set of propositions a "Boolean lattice." The new proposition calculus is 

not distributive, as is easily seen for a bidimensional A and one-dimensional B and C. 

Distributivity only holds within subsets of mutually compatible propositions whose 

associated projectors commute. The condition for the compatibility of a and b is 

)()( babaa   and )()( babab  , 

which corresponds to the condition 

)()(  BABAA  and )()( BABAB    

for the commutativity of the orthogonal projectors onto the subspaces A and B. The 

compatibility condition is easily seen to be equivalent to the distributivity of the 

sublattice engendered by a, b, a , and b .
38

 

 In a Hilbert space of finite dimension, the new calculus enjoys the weaker 

modular property that Richard Dedekind introduced in a pioneering, late-nineteenth 

century study of lattices: 

If ca  , then cbacba  )()( . 

This is so because on the one hand, if CA , then A  and CB  are both included 

in CBA  )( , which implies CBACBA  )()( ; and because on the other hand 

by repeated use of the identity  

YXYXYX  dimdimdim)dim(  

we have
39

 

dim[ )dim(dim)dim(])dim[()]( CBCBACBACBA  . 

  

 Neumann and Birkhoff then raise the two following questions: 

 

1) Is every orthocomplemented modular lattice isomorphic to the lattice of subspaces in a 

Hilbert space or similar construct? 

2) Do the axioms of an orthocomplemented modular lattice have a natural physical 

interpretation? 

 

If these two questions can be answered positively, then quantum mechanics acquires 

some sort of necessity as a consequence of the natural calculus of propositions 

concerning tests performed on the system.  

 

 

From modular lattices to projective geometry 

 

In their answer to the first question, Neumann and Birkhoff rely on a theorem by 

Birkhoff, according to which any irreducible complemented modular lattice of finite 

dimension defines a projective geometry of finite dimension. By definition, a 

complemented lattice is a lattice for which there exists a 0 and a 1 and for which every 

element a admits a complement a' such that 1' aa and 0' aa  (this operation need 
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not be an orthocomplementation). A lattice is said to be irreducible if there is a third 

minimal element on the joint of two distinct minimal elements of the lattice (the rationale 

of this definition will be explained in a moment). The dimension of the lattice is said to 

be finite if there is a maximal value for the number of elements in a chain 

1....0 21  aa . An abstract projective geometry of finite dimension is defined by a 

set of elements of increasing but bounded "dimension" called point, lines, planes, etc. and 

satisfying the four following axioms: 

 

P1: Two distinct points are contained in one and only one line.  

P2: If A, B, C are points not all on the same line, and D and E are two distinct points such 

that B, C, D are on a line and C, A, E are on a line, then there is a point F such that A, B, 

F are on a line and also D, E, F are on a line. 

P3: Every line contains at least three points. 

P4: The set of points on lines through any k-dimensional element and a fixed point not on 

the element is a (k + 1)-dimensional element, and every (k + 1)-dimensional element can 

be defined in this way. 

 

A convenient model of these axioms is the set of vector subspaces of a finite-dimensional 

vector space, a one-dimensional subspace being identified with a point, a bidimensional 

one with a plane, and so forth.
40

  

 It is easy to see that a projective geometry defines a complemented modular 

lattice if two elements a and b are ordered according to the relation "a is on b." Then the 

meet of two elements is their intersection, and their join is the smallest element that 

contains both (or the set of points contained on lines joining points of these two 

elements). The modularity of this lattice is proved by reasoning similar to that used for 

the subspaces of a Hilbert space. The 0 of the lattice is the empty set, and the 1 is the 

maximal element. If a is a given element, by P4 the 1 can be obtained by successive 

joining of points to this element: ...1 21  eea . . These points can be chosen outside 

a, since they would otherwise not contribute to the join. Therefore ...21  ee  defines a 

complement to a. 

 Reciprocally, any irreducible complemented modular lattice of finite dimension 

(superior to 2) defines a projective geometry. [Proof removed]  

 

 

The vector space interpretation of projective geometry 

 

The main result reached so far is that any irreducible complemented modular lattice of 

finite dimension (higher than 2) is a projective geometry. This theorem was essential to 

Neumann and Birkhoff because it enabled them to exploit familiar results of projective 

geometry. As was earlier mentioned, the vector subspaces of a finite-dimensional vector 

space satisfy the axioms of projective geometry. As was known since the previous 

century, for dimension higher than three the only possible projective geometries are of 
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this kind. For readers not familiar with projective geometry, the following is an outline of 

the proof.
41

 

 Firstly, it is easy to see that Desargues's theorem holds in every projective 

geometry of dimension higher than three: for two non-coplanar triangles ABC and A'B'C' 

such that the lines AA', BB', and CC' intersect in a common point, the points B'A'AB , 

C'A'AC , C'B'BC  are on the same line. Indeed if we call  the plane BCB'C',   the 

plane ACA'C',   the plane ABA'B',  the plane ABC, and '  the plane A'B'C', we have 

)'()'()(B'A'AB   , 

)'(C'A'AC   ,    )'(C'B'BC   , 

so that the three intersection points belong to the line '  . Secondly, for any plane 

imbedded in a Desarguesian geometry, it is possible to defined the sum and the product 

of points on a line (for three given reference points O, I, U) in such a manner that the line 

acquires the structure of a field K. The construction, given in figs. 1 and 2, is inspired 

from perspective drawings in which parallel lines converge on an ideal horizon. The 

axioms of projective geometry, together with the Desarguesian axiom, imply that the 

operations defined by this construction are unique (up to a isomorphism depending on the 

choice of O, U, I) and that they satisfy the algebraic axioms of a field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1:  Construction of the sum p+q of the points p and q on a line with an origin O and 

an ideal point I. This construction is intuitively justified by regarding the dotted line as 

the horizon of a perspective drawing. 
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Fig. 2: Construction of the product p•q of two points on a line with an origin O and a unit 

U. 

 

 

The construction of fig. 3 then provides the coordinates of a point in a perspective plane. 

To the point of coordinates x and y we can associate the vector-line of 3
K  engendered by 

the vector ), ,1( yx . Then a line of the projective plane is easily seen to correspond to a 

vector-plane of 3
K . More elaborate constructions yield similar results for projective 

geometries of dimension N higher than three. The objects of these geometries are thus 

interpreted as vector subspaces of N
K .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Construction of the coordinates x and y of a point M with respect to the ideal point 

I and the ideal axes OX and OY.  

 

 

 

From orthocomplemented modular lattices to generalized Hilbert spaces 

 

The field on which the vector space is built is arbitrary. It may even be non-commutative 

(in which case Pappus's theorem does not hold). We will now see that the 



orthocomplementation of the lattice associated with the projective geometry brings a 

restriction on this field. From quantum mechanics, we already know that the vector 

subspaces of a Hilbert space define a projective geometry whose associated lattice is 

orthocomplemented. The demonstration of this fact remains unchanged if we replace the 

Hilbert space by a more general kind of space which I shall call K*-space. Such a space 

is obtained by replacing the field of complex numbers with any field K that supports a 

"star conjugation" with the properties 

**)*( yxyx  , **)*( xyxy  , and xx **  

for any two elements x and y of the field, and if the Hermitian product of two vectors a 

and b is replaced with the definite form  ba,  such that 

 cabacba ,,, ,  cabacba ,, , , 

  baba ,,  for  baba ,*,  , *,,  abba  

for any three vectors a, b, c and for any element  of the field. Reciprocally, every 

orthocomplemented projective geometry of dimension 3N  is isomorphic to the set of 

vectors subspaces of a K*-space of dimension N.  Neumann and Birkhoff's proof of this 

remarkable theorem being somewhat opaque, I will provide a simple proof in the case 

3N  [proof removed]. The proof for higher dimension is easily obtained by considering 

three-dimensional subspaces.    

 If we combine this result with Birkhoff's earlier result that every irreducible 

complemented modular lattice defines a projective geometry, we arrive at the conclusion 

that every irreducible orthocomplemented modular lattice is isomorphic to the lattice of 

subspaces of a K*-space. This answers the first question of Neumann and Birkhoff about 

their new calculus of propositions. The second question concerns the physical 

interpretation of the axioms of an orthocomplemented modular lattice. Before examining 

possible replies to this second section, the reader should be warned against a pervasive 

confusion in the literature on quantum logic. 

 

 

Is quantum logic a logic? 

 

Birkhoff and Neumann clearly did not intend to replace ordinary logic by their new 

calculus of propositions. By calling this calculus a "quantum logic," they only meant that 

it was a mathematically natural extension of the Boolean calculus of ordinary logic. In 

contrast, their physicist and philosopher readers have often taken the expression 

"quantum logic" literally. They have placed quantum logic and ordinary logic on the 

same footing, either because they regarded both kinds of logic as empirically founded, or 

because they regarded ordinary and quantum logic as both justifiable by a priori means. 

In analogy with geometry, Hilary Putnam famously advocated the first option in his "Is 

logic empirical?" of 1968: 

 

I want to begin by considering a case in which 'necessary' truths (or rather 'truths') 

turned out to be falsehoods: the case of Euclidean geometry. I then want to raise 

the question: could some of the 'necessary truths' of logic even turn out to be false 

for empirical reasons? I shall argue that the answer to this question is in the 

affirmative, and that logic is in a certain sense a natural science. 

 



Putnam took Neumann's quantum logic very seriously and propounded to "just read the 

logic off from the Hilbert space." In this view, both logic and quantum mechanics would 

have no a priori necessity, and they would both derive at least in part from experience. 

Peter Mittelsteadt is a nuanced defender of the second option, which lends quantum logic 

some a priori necessity. He indeed believes that both the laws of classical and those of 

quantum logic depend on dialog games or proof trees whose structure depends on 

pragmatic preconditions of the language of physics:
42

 

 

[In the operational approach] quantum logic appears as an a-priori structure that is 

justified more rigorously and under weaker assumptions than the laws of classical 

logic. This means that first of all the pretended preference of classical is no longer 

justifiable, and secondly that quantum logic contains less empirical 

contributions—if at all—than classical logic. 

  

 In Kantian terms, both Putnam and Mittelsteadt regard the laws of logic as 

synthetic judgments, a posteriori synthetic for Putnam, a priori synthetic for Mittelsteadt. 

They thus contradict a long tradition of regarding these laws as analytic judgments. 

Philosophers usually do not mind, because they have assimilated Willard Van Orman 

Quine's attack on the traditional distinction between synthetic and analytic judgments in 

his famous "Two dogma of empiricism" of 1951. If, pace Quine, logic is purely analytic, 

one should not confuse it with a calculus of experimental propositions; and one should 

not try do derive its laws from experience; conversely, one should not try to derive rules 

of combined experimental tests from the laws of logic. This is the position defended by 

Jauch:  

The calculus introduced here has an entirely different meaning from the 

analogous calculus used in formal logic. Our calculus is the formalization of a set 

of empirical relations which are obtained by making measurements on a physical 

system. It expresses an objectively given property of the physical world. It is thus 

the formalization of empirical facts, inductively arrived at and subject to the 

uncertainty of any such fact. The calculus of formal logic, on the other hand, is 

obtained by making an analysis of the meaning of proposition. It is true under all 

circumstances and even tautologically so. Thus ordinary logic is used even in 

quantum mechanics of systems with a propositional calculus vastly different from 

that of formal logic. The two need have nothing in common. 

 

If, contrary to Jauch's opinion, the truths of logic are synthetic truths similar to those of 

arithmetic or geometry, a strong quantum-logic project becomes conceivable. This thorny 

issue may be avoided by pragmatically regarding the logic of ordinary reasoning 

(including reasoning used to defend a new logic!) as unaffected by the physical calculus 

of propositions. In this view, the question of the necessity of this calculus is decoupled 

from the question of its interpretation as a logic; its answer should be sought in the 

naturalness of the implied physical operations, not in pure laws of thought.
43
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The physical interpretation of the logical axioms 

 

The question is whether the axioms of an orthocomplemented modular lattice can be 

embodied in natural physical operations. Let us first consider the case of finite dimension 

N. The lattice properties are easy to justify, because ba   has a well-defined operational 

interpretation as the statement that the binary test b (Yes-No experiment) yields a positive 

result if the test a has just been performed with a positive result.
44

 The axioms of partial 

ordering are evidently satisfied because every ideal test is assumed to be repeatable and 

because ordinary implication is transitive. Orthocomplementation and its properties are 

also easy to justify by the duality of the Yes and No answer to binary tests: a  is the 

proposition that the test a gives a No answer. Irreducibility holds if and only there are no 

non-trivial tests that are compatible (non-interfering) with every other test. This property 

does not hold in quantum systems that obey superselection rules: for instance, the mass of 

a particle can be measured without interfering with any other measure (in other words, 

the superposition of states of different mass is not allowed). However, generalization to 

reducible lattices is unproblematic: as was earlier mentioned, a reducible lattice is the 

direct product of irreducible sublattices, in conformity with the interpretation of 

superselection rules in terms of non-combining sectors of the Hilbert space of quantum 

states.
45

  

 Modularity is somewhat harder to justify. Neumann and Birkhoff offered a 

physical argument based on the earlier discussed equivalence of modularity with the 

existence of a numerical dimension-function such that 

- If ba  , then ba dimdim   

- )dim()dim(dimdim bababa  . 

If one forgets about the difference between meet, join, and the usual logical operations, 

these properties makes aN dim1  a probability which Neumann and Birkhoff interpret as 

the a priori statistical weight of the associated quantum state (which is a basic notion of 

quantum statistical mechanics), or as the probability of a positive outcome of test a when 

nothing is specified as to its preparation.
46

 Neumann and Birkhoff nonetheless judge that 

"it would be desirable to interpret [modularity] by simpler phenomenological properties 

of quantum physics."
47

 

 This can be achieved by replacing modularity with two properties introduced by 

Constantin Piron in his influential dissertation of 1964: weak modularity and atomicity. A 

lattice is said to be weakly modular if and only if for any two elements a and b,  ba   

implies a is compatible with b . This condition is evidently met in quantum mechanics, 

because ba   translates into abbaa PPPPP   and because compatibility corresponds to 

abba PPPP  . An orthocomplemented weakly modular lattice is called an orthomodular 
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lattice.  An atom (also called a point because of the geometric interpretation) is a minimal 

non-zero element of the lattice. An atomic lattice is a lattice satisfying the two following 

axioms: 

 

A1: Every element contains an atom. 

A2 (covering law): If a and b are elements of the lattice and e an atom, one can never 

have eaba   ( ea  at most covers a). 

 

Any orthomodular atomic lattice of finite dimension is modular.
 
 A proof of this theorem 

follows.
48

 [proof removed] 

 Let us now see whether weak modularity and atomicity have natural justifications.  

Operationally, weak modularity corresponds to the condition: if a binary test b has a well-

defined result whenever a has just been tested, then the testing sequence a, b, a always 

yields the same result for the two tests of a (and so do too the two tests of b in the 

sequence b, a, b). This seems reasonable, because the premise ba   intuitively implies 

that the test b refines our knowledge of the system without destroying knowledge 

acquired by the test a. For finite dimension, the atomic axiom A1 holds necessarily since 

a chain below any given element of the lattice cannot be indefinitely lengthened by 

inserting a non-zero element under its least element. 

 The covering law A2 is less obvious. In his dissertation, Piron remarked that for 

propositions x compatible with a given proposition a, the correspondence xax   fills 

the sublattice of propositions containing a, for which a plays the role of a zero. This 

sublattice has a simple physical interpretation: it concerns the tests done on the system 

when a  is known to be true of the system, because the test xa  is then equivalent to the 

test x. One should therefore expect the correspondence to turn any atom e of the full 

lattice (not included in a) into an atom of the sublattice, which means that ea  covers a. 

Piron regarded this remark as a "justification" of the covering law. Alas it cannot be, 

because weak modularity by itself implies that ea  at most covers a if a and e are 

compatible, and because compatibility is not assumed in the covering law. At best one 

could try to argue that the validity of the covering law for compatible atoms makes it 

plausible for incompatible atoms.
49

 

 It may be noted, however, that even for incompatible a and e, their join is 

compatible with a, so that daea  , with aead  )( . Since d is compatible with 

a, the covering law will be justified if we can find a physical reason for d being an atom. 

This is what Piron managed to do a few years later by assuming the existence of 

repeatable tests for every proposition. An atom e of the lattice being associated with a 

maximal repeatable test, it can also represent a state of the system produced by this test (a 

pure state in quantum-mechanical language). Suppose that the system was originally in 

this state and that a test a then gives a No answer. After this test, we expect the system to 

still be in a maximally known state, say f, and we expect this state to be determined by 

the set of tests that do not interfere with it. This set comprises a second test of a (since 
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such tests are repeatable), and the test of every proposition x containing e and compatible 

with a. Indeed the latter kind of test may be indifferently performed before or after the 

(first) test of a (owing to compatibility interpreted as non-interference)
50

 and it obviously 

does not alter the state e in the former case. Compatibility implies 

baeaeaxaxx  )()()()( . Therefore, the state f  should be determined 

by bf   and af  , or by daeabaf  )( . This can only be true if d is an 

atom and df  . Piron thus determined the final state and justified the covering law:  

It is important to remark that without this axiom we cannot determine the final state of 

the system; and although the measurement may be ideal, [without this axiom] the 

perturbation results in a loss of information, even if we take the response of the system 

into account. 

 This argument implies conditional tests (the result of a previous test) and the 

notion of maximally known (pure) states. More recently and within the context of his and 

Mittelsteadt's schematization of the empirical proof of propositions, Ernst Walther 

Stachow has shown that the covering law can be derived from existence of conditional 

probabilities for tests performed on individual systems. This and others corroborations of 

Piron's intuition strongly plead of a certain necessity of the covering law, although not a 

kind of necessity that jumps to the eyes.
51

 

 

 

Infinite dimension 

 

In sum, we see that in the case of finite dimension, the axioms of an orthomodular atomic 

lattice correspond to natural expectations about tests performed on a physical system. 

Unfortunately, usual quantum mechanics requires a propositional lattice of infinite 

dimension. The easiest way to deal with this difficulty is to assume that quantum 

mechanics in finite-dimensional Hilbert space is more basic than its infinite-dimensional 

counterpart and to derive the latter from the former by simply requiring that finite-

dimensional subspaces of the latter should have the structure of the former. This 

procedure is physically justified inasmuch as quantum processes can concretely be 

restricted to transitions between a finite number of quantum states, as happens for 

instance in the two-level approximation of atoms interacting with properly tuned 

radiation. Operationally, a finite dimension of the propositional lattice corresponds to a 

maximal length for a chain of refinements of any binary test. This can only happen if the 

propositions correspond to sets of measurements of quantities that can only take a finite 

number of (sharply defined) discrete values. 

 For those who do not wish to assume so much from the start, it is necessary to 

examine the general case of lattices of infinite dimension. The mathematical component 

of this generalization is not too problematic. Piron accomplished most of it by adding the 

axiom of completeness according to which the minimal upper bound ba of two 

elements and their maximal lower bound ba   still exist despite the infinite dimension, 

and by replacing modularity with weak modularity and atomicity. The latter change is 
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necessary because the lattice of subspaces of a Hilbert space of infinite dimension is not 

modular
52

 and because perfectly conceivable quantum measurements, for instance 

position measurements, violate modularity.
53

 Piron managed to prove that any irreducible 

complete orthomodular atomic lattice could be represented by the lattice of subspaces of 

a K*-space.
54

 

 The operational embodiment of Piron's mathematical extension is more 

troublesome. Even the basic lattice operations, the meet and the join, are hard to justify 

because their empirical realization requires infinitely many operations. For instance, 

ba   is true if and only if an infinite sequence of alternate tests of a and b all yield 

positive results.
55

 In 1969 Jauch and Piron tried to circumvent this difficulty by defining 

propositions as classes of equivalence of experimental Yes-No questions and the product 

of a family of questions as an arbitrary question of the family.
56

 The success of this 

procedure is doubtful, for it involves potentially infinite classes of questions and an 

unclear notion of arbitrariness. According to Hans Primas, the best one can do is to 

regard the lattice structure as mathematically convenient. Then, orthocomplementation 

and weak modularity can be justified in the same manner as in the case of finite 

dimension. In contrast, atomicity becomes artificial. Why should there be a limit to the 

refining of a combination of tests? As Primas notes, atomicity does not hold in powerful 

axiomatic formulations of classical and quantum statistical mechanics. In the lattice of 

propositions of quantum mechanics, atoms correspond to pure states. This suggests that 

atomicity only applies to individual systems (the classical case is controversial). A 

possible justification for the existence of an atom below an element of the lattice would 

be the finite dimension of this element, despite the infinite dimension of the lattice. This 

is not so far, however, from assuming the concrete possibility of finite-dimensional 

lattices of propositions. Then we may as well begin with such lattices and delay infinite-

dimensional generalization until the K*-space representation has been derived.
57

   

 

 

States, probabilities, and dynamics 

 

Once a calculus of propositions or quantum logic has been defined, it is tempting to 

define the state of a system through the list of probabilities for the outcomes of all binary 

tests on the system. The Harvard mathematician George Mackey did so in 1957 in an 

attempt to base quantum mechanics on a series of plausible axioms. The central notion of 

his theory was the probability ),S,A( ap  for the observable A to take the value a when 

the system in the state S. Stated informally, his first four axioms were: 
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1) p is a probability measure in Kolmogorov's sense. 

2) The state S is defined by the function ),S,A(),A( apa  , and an observable A by the 

function ),S,A(),S( apa  . 

3) For every observable A, one can define an observable )(Af  taking the values )(af . 

4) Every convex mixture of states is a state.  

 

In the spirit of Neumann's Grundlagen, Mackey next introduced "questions," that is, 

observables that take the values zero and one only. In two additional axioms, he required 

the existence of the sum of mutually exclusive questions and he associated a question to 

every bivalued probability measure on the space of states. This allowed him to redefine 

the theory through the lattice of questions (Neumann's propositions) and through a 

probability measure on this lattice. In his penultimate axiom, he brutally assumed the 

lattice of questions to be isomorphic with the lattice of closed subsets of a Hilbert space. 

In the ultimate one, he required the probability of a positive answer to question to be 

given by PTr , wherein P is the orthogonal projector on the subset associated with the 

question and  is a positive operator of trace one (a density matrix).
58

  

 Mackey believed in some "physical plausibility" of all his axioms except the 

Hilbert-space one. As he did not have in hand the kind of operational justification later 

given by Piron, he contented himself with showing that this axiom resulted from a most 

simple and elegant extension of classical logic in which the lattice of propositions would 

be modular and orthocomplemented in the finite-dimensional case. Mackey of course 

knew from Neumann and Birkhoff that the latter properties implied the Hilbert-space 

representation, and he and Shizuo Katukani had made a step toward infinite-dimensional 

generalization in the modular case. As for the last axiom, he soon heard from his Harvard 

colleague Andrew Gleason that it was not needed: any probability measure on the 

subspaces of a Hilbert space could be represented by a matrix density.
59

 

 For adepts of quantum logic, this is an essential result for it makes the quantum 

mechanical representation of states a mere consequence of their definition through 

probabilities of propositions subjected to the rules of quantum logic. Unfortunately, 

Gleason's proof of his theorem is difficult, and the many attempts at simplifying it have 

been moderately successful. Fortunately, the theorem may be replaced by the much 

simpler variant that the British mathematician Paul Busch stated and demonstrated in 

2003. Let us begin with a more precise statement of Gleason's theorem in the context of 

Piron's quantum logic.
60

 [proofs omitted] 

 States being defined by a density matrix, it is natural to represent the evolution of 

a system by a one to one correspondence between matrix densities   and ' representing 

the states of the system at two different times t and t'. In his Harvard lectures, Mackey 

developed this idea by further requiring this correspondence to depend on the time 

difference tt  '  only (uniformity of time) and to preserve convex mixtures 

(conservation of probability). In symbols, '')'(    for any two density 

matrices   and   and for any two weights   and   such that 0 , 0  and 
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1  . Obviously, the transformation 1'  UU , wherein U is a unitary of anti-

unitary operator, meets this condition. With the help of a powerful theorem by Richard 

Kadison on automorphisms in C*-algebras, Mackey proved that reciprocally any 

mixture-preserving one-to-one mapping of the set of unitary operators onto itself could be 

generated by a unitary or anti-unitary operator (this operator being defined up to a phase 

factor). The uniformity of time implies that )(U and )2/(2 U  only differ by a phase 

factor. Since the square of an anti-linear operator is linear, the anti-unitary option is 

excluded for the evolution operator U. 
61

 

 Kadison's proof of his theorem is for experts on C*-algebras. Walter Hunziker has 

given the following direct proof of Mackey's result. [Proof omitted]  

 

 

Quantum logical necessity 

 

Quantum logic, seen as a calculus of elementary empirical propositions, rests on very 

broad and fairly natural assumptions about how we may experiment on a physical system. 

Its only odd feature is the omission of a most natural assumption of classical 

measurement: the possibility of eliminating the mutual interference between successive 

measurements. In other words, quantum logic is an impoverished version of the natural 

axiomatics of classical measurement. Although some axioms, for instance the existence 

of a least upper bound or the atomicity of the lattice, have frequently been criticized as 

too restrictive or too artificial, their necessity is evident in the case of finite dimension of 

the lattice of propositions. Conceptual and mathematical difficulties are mostly confined 

to the limit of infinite dimension, which may be postponed until the basic structure of 

quantum mechanics has been obtained for finite dimension.
62

 

 At any rate, Neumann and Birkhoff's axioms in the finite-dimensional case and 

Piron's axioms in the infinite-dimensional case have far-reaching consequences: the 

lattice of proposition must be isomorphic to the lattice of subspaces of a K*-space, 

namely, a generalized Hilbert space built on a field K equipped with a kind of 

conjugation. Quantum mechanics corresponds to the case in which K is the field of 

complex numbers. For this choice, it is possible to derive the matrix-density 

representation of states defined through the statistics of binary tests. Furthermore, the 

evolution of a system is determined by a unitary evolution operator in the manner of 

quantum mechanics.  

 The quantum logic approach to the foundations of quantum mechanics seduces by 

its being based on a very simple reduction of experiment to the answer to a series of Yes-

No questions. It is also impressive by its ability to (partially) deduce the esoteric Hilbert-

space apparatus of quantum mechanics from fairly natural notions. Much of the bad 

publicity that quantum logic got in some quarters resulted from unnecessary confusion 

between the calculus of empirical propositions and a genuine logic of thought processes. 
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The approach is not without defects, however. In its original form, quantum logic is not 

able to select the field K on which the K*-space is built. In particular, the field of real 

numbers or the field of quaternions remains possible. To this day there is no consensus on 

whether quantum logic can be naturally completed to exclude fields other than C.
63

 

 Another defect of quantum logic is the level of mathematics required to prove its 

main theorems, as should be expected when mathematicians of Neumann's or Mackey's 

power get involved. The mathematical burden is alleviated by restricting the reasoning to 

finite lattice dimension and by substituting simpler proofs to the original ones, as I have 

tried to do in this presentation. Even so, quantum logic requires lattice-theoretical and 

projective-geometrical notions unfamiliar to most physicists.   

 

 

 

4. Discreteness, probabilities, and information 

 

Quantum logic was not the only attempt to base quantum mechanics on natural axioms. 

We already mentioned Mackey's attempt, in which probabilistic axioms play an 

important role. Among other old axiomatics, most noticeable is Günther Ludwig's, which 

took off in the mid-1950s and reached its mature form in the mid-1980s. Although 

Ludwig's declared aim was to base quantum mechanics on "physically interpretable 

axioms," the demands of mathematical rigor and completeness led him into overabundant 

formalism. In its final form, his theory has not less than seventy-six axioms, most of 

which are there only for mathematical reasons. Ludwig starts with formal 

characterizations of preparation and registration procedures, and defines states 

(ensembles) and observables (effects) through the statistics of these procedures. After 

imbedding ensembles and observables in Banach spaces, he ends up deriving a lattice of 

propositions and using Piron's representation theorem in order to reach the Hilbert-space 

structure of quantum mechanics.
64

  

 While Mackey and Ludwig shifted the foundational basis from quantum logic to 

the structure of a probabilistic state space, they failed to improve on the deductive, 

rational economy of quantum logic. Indeed they both used quantum logic as an important 

(though not primitive) bridge between their axioms and quantum mechanics. The real 

turning point in natural quantum axiomatics was a memoir published in 2001 by the 

British theoretical physicist Lucien Hardy. As we will now see, Hardy changed the 

axiomatic game by short-circuiting the representation theorems of quantum logic and by 

instead deriving quantum mechanics "from five reasonable axioms" about probabilistic 

state space. In his theory, statistical correlation between discrete measurements is the 

most basic notion. The states of a system are defined through measurement probability 

distributions, which may be seen as the expression of information content.  

 Although the mathematics used by Hardy and his followers tend to be simpler 

than those of quantum logic, they still involve notions unfamiliar to most physicists. For 

this reason, I begin with an intuitive justification of some the main ideas on the simplest 

known quantum system: a particle with spin one-half (other degrees of freedom being 

abstracted away). Then I offer a mathematically light treatment of the general case (with 
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a finite number of discrete outcomes for every measurement), drawing on considerations 

by Hardy and Claude Comte. The following subsections are devoted to Hardy's theory 

per se, and to two significant improvements by Borivoje Dakić and Časlav Brukner and 

by Lluís Masanes and Martin Müller. The last section deals with the axiomatics of Giulio 

Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti, which differs from the former 

ones by being based exclusively on information-theoretic notions. 

 

 

The one-half spin system 

 

There is a continuous infinity of possible measurements of this system, giving the angular 

momentum in any direction of space. In contrast, there are only two possible outcomes 

for each of these measurements: 2/  and 2/ . If the system is found to have the 

momentum 2/  in a given direction, a subsequent measurement performed in a 

direction making an angle   with the former direction will give either 2/  and 2/ . 

Let us repeat the same preparation and the same measurement a great number of times. If 

p  and p  denote the frequencies of the two possible outcomes, we must have 

cos  pp  

in order that the average angular momentum in the direction   be equal to the projection 

of the initial angular momentum on this direction. Indeed by a correspondence argument, 

we expect the total angular momentum (or magnetic moment) of a large number of spin-

particles to behave as the angular momentum of a macroscopic object. Since 1  pp , 

we have
65

 

)2/(cos2 p , )2/(sin2 p . 

 To sum up, the double-valuedness of spin, the spatial character of space 

measurement, and a correspondence argument together imply the well-known quantum-

mechanical expression for the correlations between spin measurements in two different 

directions. In a different notation, the correlation probability for 2/  spin components 

in the directions (unit vectors) u  and 'u  is 

2

'1
)',(

uu
uu


p . 

In polar coordinates for which )sinsin,cossin,(cos u , we have 

.e)2/'sin()2/sin()2/'cos()2/cos()]'cos('sinsin'coscos1[
2

1
)',( )'(i  uup

Introducing a bidimensional Hilbert space with two orthogonal state vectors  and   

corresponding to the spins 2/  and 2/  in the polar direction, the vectors 

)2/sin(e)2/cos( i  u  and  )2/'sin(e)2/'cos( 'i

'  u  

are such that 
2

')',( uuuu p . 
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We thus see that the full quantum-kinematics of a two-level system derives from a very 

simple combination of discreteness, symmetry, and correspondence.  

 Now consider a system of two particles with spin one-half, prepared so that its 

total angular momentum vanishes (which may be verified by measuring the sum of the 

momenta of the two particles in any given direction). Suppose that the spin of the first 

particle is found to be 2/  in a given direction. Then the spin of the second particle 

must be 2/  in the same direction by conservation. By a similar correspondence 

argument, the probabilities )(' P of finding 2/  and 2/' (with 1,1',  ) for the 

spins of the two particles in two directions making the angle   must verify 

cos
2

1
  PP . 

Taking into account the normalization 

2

1
  PPPP , 

we get 

)2/(sin
2

1
)( 2  P   and )2/(cos

2

1
)( 2  P . 

Again, this is the result given by quantum mechanics, with 

 
2

1
0  

for the prepared state, and 

  )2/sin()2/cos(   

for the projecting measurement state in the ++ case. As is well known, these correlations 

violate the Bell inequalities. Thus, a most astounding consequence of quantum 

mechanics, the violation of EPR locality, can be derived from a simple combination of 

discreteness, conservation, and correspondence.
66

 

 These two arguments cannot really pass for a rational derivation of quantum 

mechanical laws, for they involve two empirical facts: the existence of a two-level system 

for which possible measurements are mapped by unit vectors in geometrical space, and 

the existence of combined spin states for which the total angular momentum vanishes. 

They nonetheless seem to be pointing to some sort of necessity of the quantum mechanics 

of two-level systems.  

 

 

N-level systems  

 

Let us now consider an arbitrary N-level system, for which any given maximal 

measurement performed on the system yields N distinct discrete outcomes. We assume 

that every such measurement is stable by repetition, so that it can be used as a preparation 

of the system. A system prepared in this manner is said to be in a pure state. Let the 

system be continuously transformed by some interaction. The outcome of a second 

measurement performed on this system is necessarily stochastic, because the system 

cannot jump from one discrete value to another during a continuous transformation. By a 
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correspondence argument, we expect the repetition of the measurement on a great 

number of identically prepared systems to yield a well-defined probability for each 

possible outcome of the measurement (axiom A1). For transformations by internal 

interaction or by application of an external classical field we should expect the system to 

be in a pure state before a second interaction, because there is no information loss in this 

process. For transformations by interaction with another system whose final state is 

undetermined, there is a loss of information so that the first system can only be in a 

mixture of pure states. 

 The most general mixture involves every discrete outcome nA  of every possible 

measurement A, with the statistical weight A)(n . The corresponding state S is 

empirically characterized by the probabilities for the various outcomes mB  of every 

possible measurement B: 


n

mnnm BAPBP
,A

),()A(),S(  , 

in which ),( mn BAP denotes the correlation between the outcome mB of the measurement 

B and the outcome nA  of the measurement A. The sum over A may be discrete or 

continuous. Unless the functions ),( mn BAP  are chosen in a special way, the number of 

such combinations is infinite and an infinite number of choices of the measurement B is 

necessary in order to determine the state of the system. This is excluded by the 

correspondence condition that a macro-system made of a large number of copies of the 

system should have a finite number of effective degrees of freedoms: the value of any 

associated macro-quantity should be a function of the value of a finite number of macro-

quantities. Take the example of spin one-half. For a macro-system made of identically 

prepared spins, the average spin in the direction u should be a function of the average 

spins along three orthogonal axes: 

zzyyxx SuSuSu uS . 

By correspondence, these ensemble averages should be identical with averages calculated 

from the probabilities that an individual system be found with the spin 2/  in the 

directions u , Ox, Oy, and Oz respectively. Therefore, only three probability 

measurements are necessary to determine a spin state.  

 In conformity with this correspondence argument, we will assume that a finite 

number of probability measurements is always sufficient to determine the state of the 

system, despite the infinity of possible measurements (axiom A2). In the sequel, the 

minimal number of required measurements is called
67

 K. This means that a state can be 

represented by the sequence of probabilities ),...,,...,,( 21 Kr ppppp   of a fixed set of K 

determinations, a determination being a measurement performed with a given result (for 

instance, in the spin case the determinations could be 2/  for xS , 2/  for yS , 2/  

for zS ). The state p is mixed if and only if there exists two constants   and   and two 

states p' and p" such that 10   , 10   , and "' ppp    for any r. Since every 

mixture is allowed, the space of states is a convex, bounded subset of K
R (for a given 

choice of the set of determinations). Since pure states cannot be mixtures, they 
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necessarily belong to the boundary of this set. Consequently, the subset of pure states is a 

manifold of dimension inferior or equal to 1K .
68

 

 We now introduce the additional requirement that any two pure states can be 

connected by a continuous reversible transformation within the subset of pure states 

(axiom A3). This requirement is similar to Bohr's old principle of mechanical 

transformability: it is based on the intuition that a continuously varying action on the 

system, such as a varying impressed field, cannot induce quantum jumps; and on the 

intuition that the measurability of a quantity requires its continuous variability. With this 

complement, the previous assumption has an important consequence: a mixture of 1K  

pure states can always be reduced to a mixture of K pure states (with varying choices of 

the latter states)(condition 'A2 ).This may be proved as follows. By definition, a given 

state S is a )1( K -mixture if and only if it belongs to the polyhedron defined by 1K  

pure states. By axiom A3, there is a continuous transformation bringing one of these 

states continuously to another. There are two possibilities: either the state S remains 

within the polyhedron defined by the evolving set of pure states, or there is a stage of the 

transformation at which the state S crosses one of the faces of the polyhedron. In the 

former case, the state S is a K-mixture at the end of the transformation. In the latter case, 

it is a K-mixture at the crossing stage of the transformation. This ends the proof of the 

desired result. By induction, every state can be represented as a mixture of K pure states.  

 A stronger assumption would require every state to be a mixture of the N 

eigenstates
69

 of a single, properly chosen measurement (axiom "A2 ). For instance, in the 

spin case the most general mixture yields 

 

uu

uuuuuuu )('
2

1

2

1
)',()()'(  pp  

for the probability of 2/  being measured in the direction u'. 

Setting 
u

uu)(a , 
u

uuu )(1

0 a , and 
2

1 a
a


 , 

we have 

)',()',()'( 00 uuuuu   papap , 

in conformity with the stronger requirement. In the 1990s, Claude Comte and Daniel 

Fivel introduced this requirement as the defining characteristic of quantum-mechanical 

states. Comte named it the "principle of homogeneity of statistical ensembles" and used it 

to derive the form of the quantum-mechanical density matrices in the case of spins of any 

value. Fivel made it the nerve of an impressive derivation of quantum-mechanical 

transition probabilities on fairly natural operational-probabilistic grounds. We will see 

that later quantum axiomatics appeal to this principle or to its weakened form A3, at least 
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implicitly. In the following I adopt the weakened form, which is easier to justify by a 

priori means.
70

 

 In the notation introduced at the beginning of this paragraph, a K-mixture S is 

defined by the existence of a sequence rS  of  pure states (obtained by selecting a given 

outcome of a given ideal measurement) determinations such that 





K

r

nrrn APAP
1

),S(),S( 
 

for any choice of the measurement A and of the outcome index n. In the two-level case 

( 2N ), the two outcomes of any given measurement are complementary and it is 

sufficient to consider only one of them. We will now investigate the lowest values of the 

characteristic number K in this case. The value 1K  is excluded because it would imply 

the discreteness of the subset of pure states, in contradiction with axiom A3. It would also 

imply that the probability of a single determination is sufficient to determine the state of 

the system, in conformity with the classical probability theory of coin flipping.  

 For 2K , the dimension of the pure-state manifold must be 1. By axiom A3, 

there is a continuous one-parameter group of transformations acting transitively on this 

manifold. As is well know, any such group is isomorphic to the additive group of real 

numbers. Call   an additive parameter, and label the pure states with this parameter. The 

probability of finding the system in the state '  when it has been prepared in the state   

is necessarily of the form 

)'()',(   fP , 

because the transformation 'T  can be combined with the determinations M  and 'M  to 

yield the determinations '

1

'' MTMT  

  and 0

1

''' MTMT 

 . The condition A2' then 

requires that for any triplet 1 , 2 , 3  of pure states and for any value of the mixing 

weights 1 , 2 , 3  there exists a pair '1 , '2  of pure states and mixing weights '1 , '2  

such that for any state  , 

)'(')'(')()()( 2211332211   fffff . 

The general solution of this finite-difference equation is a linear combination of solutions 

of the form  kf ie)(  . For such solutions, the condition 
'i

2

'i

1

i

3

i

2

i

1
21321 ee'eee

  kkkkk
  

must hold. Since 1'' 21321   , a possible solution corresponds to 0k  with 

free choices of '1 , '2 , '1 , '2 . For a non-zero value of k, there are three unknowns (for 

instance '1 , '2 , '1 ) and two real equations (the real and imaginary parts of the above 

condition). The problem is possible, and for the same value of the unknowns the choice 

k  is also possible since the  coefficients are real. For two distinct and non-opposite 

values of k, there are four real equations and three unknowns: the problem becomes 

impossible (except for accidental choices of the parameters for which the equations are 

not independent). Therefore the most general solution has the form 
 kk cbaf ii ee)(  ,  or  cos2)( baf   
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because  f  must be real and because the additive parameter of the transformation group 

can be redefined so that 1k . The constraint 1)0( f , 1)(0  f  and the existence of 

a value of   for which 0)( f  imply 2/1a  and 4/1b . The end result is 

2/cos)( 2 f . 

Consequently, the pure states may be represented in a two-dimensional Euclidean vector 

space as 

 )2/sin()2/cos(  , 

with the transition probability 
2

')',(  P  . 

This is the so-called real-Hilbert-space quantum mechanics. 

 The next simple choice is 3K . In this case, the pure-state manifold is at most 

bidimensional since pure states belong to the boundary of a convex bounded domain of 
3

R . The one-dimensional case is excluded, because a convex domain cannot be formed 

by patching portions of ruled surfaces (whose interior points cannot be extreme) in such a 

manner that all extreme points belong to the same connected curve (as required by axiom 

A3). In the two-dimensional case, the associated transformation group has one-parameter 

subgroups that leave a given pure state invariant. This group therefore has the same 

properties as the group of motions of a rigid body around a fixed point in Helmholtz's 

theory space. By the Helmholtz-Lie argument, this group is isomorphic to the SO(3) 

group of rotations in 3
R . With a proper choice of axes (that is, of basis determinations), 

the set of pure states becomes a unit sphere. The subset of states belonging to a disk 

passing through the origin of the sphere can be treated as in the 2K  case. Since any 

two pure states u and u' on the unit sphere belong to such a disk, the probability )',( uuP  

of finding a system in the state u when it has been prepared in the state u' is  

2

'1
)',(

uu
uu


P , 

just as in the quantum mechanics of a two-level system. As we have seen in the case of a 

one-half spin particle, this probability law implicitly contains the Hilbert formalism of 

quantum mechanics in two (Hilbert-space) dimensions.  

 In the limited context of two-level systems, the choices 1K  and 4K  are 

permitted. In order to exclude these cases, consider systems of every possible (finite) N 

and their associated freedom ).(NK  We may physically combine a N-level and a N'-level 

system and investigate the statistical behavior of the combination. It seems reasonable to 

assume that this behavior is entirely determined by the statistics of measurements 

performed on the two components of the combined system (axiom A4). In symbols, this 

means that the state of the combined system is described by the K' probabilities 

)'M(),...,'M( 1 KPP  of the determinations 'M,...,'M1 K  of the first component system, the 

K" probabilities )"M(),...,"M( 1 KPP  of the determinations "M,...,"M1 K  of the second 

component system, and of the "' KK correlations )"M,'M( srP  with '1 Kr  and 

"1 Ks  . Consequently, the combined system is described by "'"' KKKK   

measurements. Evidently, the number of levels (distinct measurement outcomes for a 

given maximal measurement) is the product "' NN . Altogether, we have 

]1)"(][1)'([1)"'(  NKNKNNK   for any two integers 'N  and "N .  



As is easily seen, this condition can only be met if 
NNK 1)( , 

wherein  is an integer. This implies that for 2N , all even values of K are excluded. 

Still another argument is needed to exclude odd values of N higher than three.
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 For the moment, let us assume
72

 that nature has chosen the smallest value of K 

compatible with the former axioms (axiom A5), namely 12  NK . Evidently, N-level 

quantum mechanics is compatible with this choice: its most general states are represented 

by matrix densities, which are positive (therefore Hermitian) operators of trace one in a 

N-dimensional Hilbert space. Such matrices have 1N independent real elements on the 

diagonal, and 2/)1( NN complex conjugate pairs of elements outside the diagonal, 

which makes a total of 1)1(1 2  NNNN  real parameters. We will now examine 

whether quantum mechanics is the only theory compatible with the former axioms and 

with the choice 12  NK . 

 By axiom A2, the state S of the system is determined by the sequence of 

probabilities 

rr pP )M,S(  

for K  determinations rM . For 12  NK , there exist K unit vectors r in a N-

dimensional Hilbert space and a Hermitian matrix   such that  

rprr   for Kr 1 . 

Indeed the r  vectors can be chosen so that real-number linear combinations of the 

projectors rr  span the space of Hermitian matrices, in which case rrrr  Tr  

is the r covariant coordinate of the operator   in the basis of these projectors with 

respect to the scalar product  ABBA Tr),(  for any two Hermitian matrices A and B. 

For an arbitrary measurement M, the probability )M,S(P  must be an affine function of 

the vector p that represents the state S, because the probabilities corresponding to 

mixtures of two states are the weighted sums of the probabilities corresponding to the 

individual states. Consequently, there exists a K-vector q and a constant C such that  

CpqCpqP
r

rr  )M,S( . 

As the constant C  can be absorbed in a redefinition of q,
73

 this probability can still be 

expressed by means of the matrix  :  

MTr)M,S( P ,  with 



K

r

r rrq
1

M . 

In plains words, the determination rM  is represented by the projector rr  and an 

arbitrary determination is represented by a linear combination of such projectors. 

 This does not prove yet that our theory is equivalent to quantum mechanics, 

because this equivalence further requires the following: 
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r
q so that CpqpP

r

r

r

rrr
 

)()M,S( , we have 
r

rr
pqP ')M,S(  with .1' )(r

rrr
qqq   



1) the matrix  is positive and has trace one, 

2) there is a one-to-one correspondence between  matrices and states S, 

3) pure states or pure measurements are in a one-to-one correspondence with rays in the 

N-dimensional Hilbert space. 

In order to establish these properties, we will need to know that any two-level subspace of 

the space of states of the system behaves as a two-level system (axiom A6). The 

justification of this condition goes as follows.
74

 

 Consider a complete measurement A with the outcomes NAA ,...,1 . A two-level 

subspace is defined by the states S for which 

0),S( nAP  for Nn 3 . 

Call T a reversible transformation that leaves this subspace invariant. To the 

determinations 1M  and 2M  corresponding to the outcomes 1A  and 2A of the 

measurement A, we may associate the new determinations 1

1TTM  and 1

2TTM  . The 

pairs of determinations obtainable in this manner define a new two-level system whose 

states belong to the defined subspace (since we generally defined a system by its 

measurements and since every pair of determinations defines a measurement). Axiom A1 

is trivially satisfied, since the probability )M,S(P for a state S and a determination M 

belonging to the subsystem is the restriction of the original correlation function to the 

subspace. Axiom A2 also holds, since the dimension of a subspace of a finite-dimensional 

space is necessarily finite. By axiom A3 applied to the original system, we know there is a 

continuous sequence of transformations connecting any pair of pure states of the 

subspace. However, the intermediate pure states do not necessarily belong to the two-

level subspace. We will nevertheless assume that axiom A3 is also satisfied, so that the 

two-level subspace behaves as a genuine two-level system. This system is empirically 

realizable if the two-level transformations T can be physically realized. Quantum 

physicists all know that this is the case: when, for instance, an atom in a given stationary 

state interacts with monochromatic radiation tuned to the frequency of a possible 

transition to another state, the associated transformation is very nearly a two-level 

transformation (Rabi cycles for instance). 

 We are now equipped to prove the desired properties of the  matrix 

representation of the state of a N-level system. We first choose the N first determinations 

rM  so that they correspond to the different outcomes NAA ,...,1  of the same complete 

measurement A. In addition, we choose the r  vectors so that the N first projectors 

rr  represent the pure states rS defined by the determinations rM . This is possible 

because the formal expression of this requirement is 

)M,S(
2

srPsr    for   Nr 1  and Ks 1 ; 

and because the number NK of such conditions is always inferior to the number 

)12( NK  of real parameters that define K rr  projectors in the N-dimensional Hilbert 

space. For any such choice of the N first determinations, the trace of the operator   is 

one since the sum of the probabilities of the outcomes NAA ,...,1 must be one. 
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 Now consider the subspace of states S such that  

0)M,S( rP  for Nr 3 . 

By axiom A6, this subspace should behave as a two-level system and its states should 

therefore be describable by density matrices in a bidimensional Hilbert space. This 

implies that any projector   with  

21    and 1
22
   

should represent a possible state S of the system. This state is pure with respect to the 

subspace. A priori it could still be obtained by mixing states not belonging to the 

subspace. It is nonetheless pure in the global space because it can be derived by a 

reversible transformation extending the reversible subspace transformation that generates 

it from the state 11 ), and because any state S' related to a pure state S by a reversible 

transformation T is itself a pure state (since 1)MS,( P  implies 1)'M,S'( P  with 
1TST'S  and 1TMTM'  ). We next consider the subspace of states S such that 

0)M,S( rP  for Nr 4  and 0)M,S( P , 

wherein M denotes the complementary of the determination associated with S . 

By the same argument, every projector ''   with  

3'''    and 1''
22
   

should represent a possible pure state of the system. After iterating the argument until we 

reach the vector N , we may conclude that every unit vector of the N-dimensional 

Hilbert space defines a pure state of the system.  

  Consequently,   is positive for any (unit) vector  , which means that 

the operator  is positive. Any positive (therefore Hermitian) operator of trace one 

represents a possible state of the system, since any such operator can be decomposed into 

a linear combination of the projectors that diagonalize it with positive coefficients adding 

to one, and since this combination corresponds to a mixture of the corresponding pure 

states. Lastly, any pure state of the system must be represented by a    projector, 

because every other kind of operator would be mixture of such projectors. This ends the 

proof that the system is equivalent to an N-level quantum system.
75

  

 To sum up, we have considered systems defined by a set of maximal 

measurements that can have N distinct outcomes.
76

 We defined pure states as results of 
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maximal measurements, and arbitrary states as statistical mixtures of such states. We then 

investigated the probability of the various outcomes of every possible measurement for a 

given state of the system, and proved that this probability has the form given by N-level 

quantum mechanics if the following axioms hold: 

A1: The repetition of the same measurement on a great number of identically prepared 

systems yields a well-defined probability for each possible outcome of the measurement. 

A2: A finite number K of probability measurements is always sufficient to determine the 

state of the system. 

A3:  Any two pure states can be connected by a continuous reversible transformation 

within the subset of pure states. 

A4: The behavior of a combined system is entirely determined by the statistics of 

measurements performed on the components of this system. 

A5: The true value of K is the lowest value compatible with the former axioms. 

A6: Any two-level subspace of the space of states of the system behaves as a two-level 

system. 

 The proof begins with the cases 2N  and 3,2K , which are treated by means 

of condition 

'A2  : A mixture of 1K  pure states can always be reduced to a mixture of K pure states, 

which is a consequence of A2 and A3. 

This condition could have been replaced by Comte's and Fivel's stronger condition, 

"A2 : Every state is a mixture of the N determinations of a single, properly chosen 

measurement, 

which however does not directly derive from A2 and A3. The proof goes on with the 

demonstration that axiom A4 implies that 1 NK ,  being an integer. The value 

1  being excluded by axiom A3, nature's choice must be 3  according to A5. In this 

case and for 2N  , the system is equivalent to a two-level quantum system. The 

equivalence for higher values of N results from the choice 12  NK  and from axiom A6  

 The first three axioms can be justified by correspondence arguments. They 

warrant that a macro-state of a macro-system made of a large number of copies of the 

system is described by a finite number (A2) of well-defined (A1), continuously modifiable 

(A3) macro-quantities. The fourth axiom results from the empiricist requirement that the 

state of a system should always be accessible by measurement and from the 

correspondence requirement that measurements, being ultimately expressed in terms of 

classical quantities, should always be analyzable into measurements performed on the 

components of the system. This axiom is more obvious in the case of very distant 

components, for which global instantaneous measurement is not conceivable. The sixth 

axiom is suggested by the concrete possibility of restricting the transitions of a quantum 

system to two levels. The fifth axiom is the least satisfying. We will see in a moment that 

it is not necessary. 

 

 

 

                                                                                                                                                 
independent of the choice of the maximal measurement, so too must be N. Cf. Chiribella, D'Ariano, and 

Perinotti 2011, p. 16. 

  



Hardy's axioms 

 

In 2001, Lucien Hardy's published his "Quantum theory from five reasonable axioms," 

which is a rationalist attempt to derive quantum mechanics as a natural sort of discrete 

probability theory:
77

 

 

Quantum theory is simply a new type of probability theory. Like classical 

probability theory it can be applied to a wide range of phenomena. However, the 

rules of classical probability theory can be determined by pure thought alone 

without any particular appeal to experiment (though, of course, to develop 

classical probability theory, we do employ some basic intuitions about the nature 

of the world). Is the same true of quantum theory? Put another way, could a 19th 

century theorist have developed quantum theory without access to the empirical 

data that later became available to his 20th century descendants? In this paper it 

will be shown that quantum theory follows from five very reasonable axioms 

which might well have been posited without any particular access to empirical 

data.  

 

The basic ingredients of Hardy's approach are devices for preparing, transforming, and 

measuring a system, and states defined by the probabilities of measurement outcomes. He 

introduces the "dimension" N and the "number of degrees of freedom" K' of the system, 

which correspond to my N and my 1K .
78

 His axioms read: 

 

H1 Probabilities. Relative frequencies … tend to the same value (which we call the 

probability) for any case where a given measurement is performed on an ensemble of n 

systems prepared by some given preparation in the limit as n becomes infinite. 

H2 Simplicity. K is determined by a function of N … and for each given N, K takes the 

minimum value consistent with the axioms. 

H3 Subspaces. A system whose state is constrained to belong to an M dimensional 

subspace … behaves like a system of dimension M. 

H4 Composite systems. A composite system consisting of subsystems A and B satisfies 

BANNN  , BA KKK ''' . 

H5 Continuity. There exists a continuous reversible transformation on a system between 

any two pure states of that system. 

 

This list of axioms has much in common with my axioms A1,…, A5. Axiom H1 is the 

same as A1; H2 is the same as A5; H4 can be derived from A4, as Hardy himself shows
79

; 

H5 is the same as A3. However, Hardy does not regard the finiteness of K (my A2) as an 

axiom; he casually introduces this property by arguing that "Most physical theories have 

some structure which relates different measured quantities." The subspace axiom H6, is 

identical with A6. Hardy justifies it as follows:
80
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This axiom is motivated by the intuition that any collection of distinguishable 

states should be on an equal footing with any other collection of the same number 

distinguishable states. In logical terms, we can think of distinguishable states as 

corresponding to propositions. We expect a probability theory pertaining to M 

propositions to be independent of whether these propositions are a subset or some 

larger set or not. 

 

 Hardy regards all his axioms as "natural" from the point of view of the theory of 

probabilities. The axiom A5 of continuity is the one that excludes classical probability 

and forces us to adopt quantum probability theory if we accept the simplicity axiom. 

Hardy's justification of the continuity axiom reads: 

  

Given the intuition that pure states represent definite states of a system we expect 

to be able to transform the state of a system from any pure state to any other pure 

state. It should be possible to do this in a way that does not extract information 

about the state and so we expect this can be done by a reversible transformation. 

 

Implicitly, this is a correspondence argument because the idea of a definite state that can 

be transformed continuously is a classical idea. In my opinion, correspondence arguments 

are the true justification of most of Hardy's axioms. Indeed the natural character of an 

axiom from a probability-theory point of view or from an information-theory point of 

view does not imply its natural character from a physical point of view. For instance, 

definite probabilities of discrete outcomes may be natural for a probability theorist and 

continuous information-preserving transformation may be natural for an information 

theorist; and yet their combination leads to the quantum weirdness of superposed and 

entangled states. The reason is that the simultaneous, concrete realization of these two 

axioms involves an odd mixture of continuity and discontinuity, in a manner imposed by 

the correspondence principle.
81

 

 Hardy's derivation of quantum probability theory from his axioms is more 

rigorous but more difficult than the naïve derivation given in the previous subsection. It 

begins with a thorough analysis of the structure of probability relations in the vector 

space of K-determinations, which Hardy call "fiducial measurements" (he does not 

assume pure measurements and pure states from the start). He exploits this structure to 

derive the probability relations in the case 2N , 4'K  (the reasoning involves more 

advanced group theory than my elementary presentation). He proves the relation 
NK ' from axiom H4. Lastly, he sets 2 and uses the subspace axiom H3 to 

construct quantum probability theory at any N from the 2N  case. He does this mostly 

in the fiducial vector space and he leaves the correspondence of the resulting '' KK   

probability matrices with quantum-theoretical density matrices to the end. Lastly, Hardy 

shows that his axioms are compatible with two kinds of transformations for closed 

systems: reversible, probability-conserving transformations represented by unitary 

transformations in the quantum-theoretical N-dimensional Hilbert space, and irreversible 
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transformations associated with measurements and represented by projectors in Hilbert 

space. 

 

 

Dakić and Brukner 

 

The clarity and elegance of Hardy's derivation and the simplicity of his axioms have 

attracted much legitimate attention. An evident defect of this derivation is the artificial 

character of the simplicity axiom H2. Hardy himself wondered about the possibility of 

more complicated theories involving exponents  higher in the relation 1 NK .
82

 In 

2009, the Viennese theorists Borivoje Dakić and Časlav Brukner answered this question 

negatively by showing that K could not exceed three in the two-level case 2N . They 

relied on a different system of axioms:
83

 

 

D1 (Information capacity): An elementary system has the information carrying capacity 

of at most one bit. All systems of the same information carrying capacity are equivalent. 

 

D2 (Locality): The state of a composite system is completely determined by local 

measurements on its subsystems and their correlations. 

 

D3 (Reversibility): Between any two pure states there exists a reversible transformation. 

 

The axiom D2 is the same as axiom A4 and it is directly related to Hardy's axiom H4. The 

axiom D3 is a much weakened form of axioms A3 or H5, for it does not assume the 

existence of a continuous sequence of transformations gradually bringing the first pure 

state to coincide with the second. This axiom warrants that a compact group acts 

transitively on the space of pure states. Its weakness is compensated by the strength of 

axiom D1, which in fact contains two subaxioms: 

'D1 : An elementary system has the information carrying capacity of at most one bit. 

"D1
: All systems of the same information carrying capacity are equivalent. 

Since the information carrying capacity is nothing but the number N of distinct outcomes 

of a maximal measurement, axiom "D1
 is an information-theoretic rephrasing of (a 

generalization of) Hardy's subspace axiom H3.
84

 Dakić and Brukner translate their 

information-theoretic axiom 'D1  into "any state of a two dimensional system can be 

prepared by mixing at most two basis (i.e. perfectly distinguishable in a measurement) 

states." Here we recognize the Comte-Fivel principle "A2  in the case 2N . Apparently 

unaware of Comte's work, Dakić and Brukner borrowed axiom 'D1  from their Viennese 

colleague Anton Zeilinger. 

 In a celebration of Danier Greenberger's sixty-fifth birthday, Zeilinger suggested 

to base quantum theory on the principle that "An elementary system represents the truth 
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value of one proposition" or, equivalently, that "An elementary system carries 1 bit of 

information." From this principle he derived randomness and entanglement: 

 

An elementary system can only give a definite result in one specific measurement. 

The irreducible randomness in other measurements is then a necessary 

consequence. For composite systems entanglement results if all possible 

information is exhausted in specifying joint properties of the constituents. 

 

For instance, there can only be one direction of spin measurement for which the spin of a 

particle can have a definite value because the spin state can only contain the reply to a 

single Yes-No question. In any other direction, the result of the measurement must be 

random. For a composite system of two spins, the joint property that the two particles 

have the same spin in one direction and the other joint property that the two particles 

have the same spin in another direction exhaust all possible information since the global 

system has two bits. The answer to other questions, for instance about the spin of one of 

the particles in a given direction, should be random: this is the signature of an entangled 

state.
85

 

 Seduced by this reasoning, Dakić and Brukner turned Zeilinger's information- 

theoretic principle into the most potent axiom of their theory. Their first remarkable result 

is that the axioms 'D1  and D3 are sufficient to determine the probability theory for 2N  

and any given value of K. Here is a simplified proof.
86

 [Proof omitted] 

 There remains to be proved that 1K  (classical probability theory) and 3K  

(quantum mechanics) are the only two choices compatible with the axiom. By Hardy's 

argument on product spaces, we already know that even values of K are excluded. In a 

highly ingenious manner, Dakić and Brukner prove that their axioms exclude any value 

of K higher than 3. Their argument goes as follows. [proof omitted]  

  Since the even value 2K  is already excluded, we are left with the options 

1K  (classical probabilities) and 3K  (quantum probabilities). By Hardy's 

consideration of subspaces, we can then show that the states of any N-level system can be 

represented by a quantum-mechanical density matrix. 

 Dakić and Brukner's proof of the impossibility of 4K  is easily adapted to 

Hardy's axiomatics, for it only relies on the subspace axiom and on the representation of 

the pure states of a two-level system by a )1( K -dimensional sphere. The latter 

representation can be derived from Hardy's axioms, without appeal to axiom 'D1 , by 

exploiting the possibility of representing any compact group by orthogonal matrices.
87

 

Dakić and Brukner nonetheless judge their axiomatics superior, because it does not 

require the continuity assumption (for the transformation group) and because it is 

compatible both with classical and with quantum probabilities. The continuity 

assumption is only necessary to exclude the classical option.  

 One may still prefer Hardy's axioms, because they can be justified by 

correspondence arguments whereas the information capacity axiom seems hard to 

swallow. Why after all should every two-level system be assimilated to a one-bit 
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information facility? Is not it highly unnatural to assume, when there is a continuum of 

possibilities of measurement, that every state of the system can be obtained as a mixture 

of the outcomes of a single measurement? In 2010, Lluís Masanes and Martin Müller 

replaced this axiom with the "requirement" that in two-level systems "all mathematically 

well-defined measurements are allowed by the theory" or that "all tight effects 

correspond to allowed measurements." [I omit the precise mathematical expression of 

this condition] We will now see that Masanes and Müller's requirement can replace the 

Comte-Fivel-Zeilinger axiom 'D1  in the derivation of the fact that every point of the 

sphere 12 X  defines an allowed measurement for a two-level system.
88

 [proof omitted] 

Another possible replacement for the axiom 'D1  is Hardy's continuity, that is, the 

possibility of gradually transforming pure states. [proof omitted]  

 

 

Chiribella, D’Ariano, and Perinotti 

 

In the wake of Hardy's seminal axiomatics, there has been a growing tendency to 

formulate and justify the axioms of quantum mechanics by information-theoretical 

means. This is a natural evolution considering the present importance of researches on 

quantum-mechanical information processing and quantum computing. In 1990, John 

Archibald Wheeler famously expressed the "It from bit" program for reducing physics to 

the processing of information. Although this sort of reductionism has often been 

criticized, it had inspired a few arguments for the information-theoretic necessity of 

quantum theory. The first of these is found in a memoir of 2003 by three philosophers of 

physics, Rob Clifton, Jeffrey Bub, and Hans Halvorson (CBH). The gist of their 

argument is a proof of the three following facts: 

 

1) The impossibility of supraluminal communication between two systems entails the 

commutativity of the associated albebras of observables. 

2) The impossibility of perfectly broadcasting the information contained in an unknown 

physical state entails the non-commutativity of the algebra of observables of an 

individual system. 

3) The impossibility of unconditionally secure bit commitment entails the existence of 

entangled states.  

 

The first impossibility (micro-causality) is a mere consequence of relativity theory; the 

second and third impossibilities are well-known consequences of quantum mechanics 

applied to quantum cryptography. CBH express their consequences in the language of 

C*-algebras, that is, generalizations of the operator algebra on Hilbert spaces meant to 

encompass every past and future physical theory (see above p. xxx).
89
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 No matter how interesting this result may be as in information-theoretic 

characterization of quantum theory, it cannot pass for an argument for the necessity of 

quantum mechanics. There are three reasons for that. Firstly, the C*-algebraic framework 

is much too abstractly mathematical to pass for an a priori natural frame in which to 

formulate physical theory.
90

 For a rationalist exploitation of CBH's result one would first 

need to derive this framework from simple operational considerations, which does not 

seem easier as deriving the Hilbert space structure of quantum mechanics. A second 

shortcoming has to do with the contents of CBH's information theoretic principles. Even 

if they could be shown to be natural from an information-theoretic point of view, this 

would not make their physical realization in elementary systems more natural. Thirdly, 

CBH do not prove that quantum mechanics results from their principles. What they 

construct is a generalized quantum theory defined by a C*-algebra satisfying the 

algebraic constraints that derive from their information-theoretic principles. They want 

this generality because they have in mind situations (quantum field theory, quantum 

gravity) in which it may be needed.  

 Very recently Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti 

(CDP) have offered an "informational derivation of quantum theory" that does not have 

the first and third of the defects of CBH's derivation. CDP arrive at quantum mechanics, 

and they do that in a purely operational framework based on probability distributions for 

circuits resulting from the connection of physical devices: 

 

Our principles do not refer to abstract properties of the mathematical structures 

that we use to represent states, transformations, or measurements, but only to the 

way in which states, transformations, and measurements combine with each other.  

 

CDP give the following informal statement of their axioms:
91

 

 

C1 Causality: the probability of a measurement outcome at a certain time does not depend 

on the choice of measurements that will be performed later. 

C2 Perfect distinguishability: if a state is not completely mixed (i.e., if it cannot be 

obtained as a mixture from any other state), then there exists at least one state that can be 

perfectly distinguished from it. 

C3 Ideal compression: every source of information can be encoded in a suitable physical 

system in a lossless and maximally efficient fashion. Here lossless means that the 

information can be decoded without errors and maximally efficient means that every state 

of the encoding system represents a state in the information source. 

C4 Local distinguishability: if two states of a composite system are different, then we can 

distinguish between them from the statistics of local measurements on the component 

systems. 

C5 Pure conditioning: if a pure state of system AB undergoes an atomic measurement on 

system A, then each outcome of the measurement induces a pure state on system B. 

C6 Purification postulate. Every state has a purification. For fixed purifying system, 

every two purifications of the same state are connected by a reversible transformation on 

the purifying system. 
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 The causality axiom C1 is so evident that all other axiomatizers assumed it without 

stating it. The local distinguishability axiom C4 is a rewording of A4 or D2. The other 

axioms are more original. The purification postulate means that every state of a system 

may be regarded as the marginal state of a subsystem of a larger system that is in a pure 

state. CDP note the affinity with Schrödinger's remark of 1935:  

 

An optimal knowledge of the whole does not imply an optimal knowledge of its 

parts—that is the whole mystery. I would not call that one but rather the 

characteristic trait of quantum mechanics, the one that enforces its entire 

departure from classical lines of thought. 

 

Somewhat artificially, CDP include the existence of reversible transformations between 

any two pure states in the purification postulate. The axioms C1, C2, and C3 serve to 

derive the duality between pure states and pure determinations as well as the 

representation of any state as a convex mixture of pure states; whereas in my simplified 

approach these facts are trivial consequence from the definition of general states as 

mixtures of states produced by maximal measuring devices. Axioms C5 and C6 sustain a 

proof that 12  NK  and allow the derivation of the density-matrix representation. 

Interestingly, CDP do not need the subspace axiom. They deduce the equivalence (up to a 

reversible transformation) of all systems with the same dimension from their own 

axioms.
92

  

 In the case of two-level systems (N = 2), the axiom C2 of perfect distinguishability 

results from Masanes and Müller's requirement that "all mathematically well-defined 

measurements are allowed by the theory." [proof omitted] This axiom C2 may replace the 

latter requirement in the proof that every point of the unit sphere in K-space defines a 

pure state. [proof omitted] 

 CDP's proof that axioms C5 and C6 imply the relation 12  NK relies on a 

difficult and lengthy exploitation of probabilistic teleportation schemes. A much simpler 

proof can be given by applying the pure-conditioning axiom C5 directly to the case of the 

composite system made of the two-level systems I and II. [proof omitted]  

 

 

Hardy axiomatics and necessity 

 

Let us recapitulate the various deductions given in this paragraph. We started with the 

definition of a system and its pure states by repeatable (maximal) measurement 

operations that have a fixed number N of discrete outcomes. The selection of a single 

measurement outcome is what I call a determination, and it is associated to a pure state. 

In general, the state S of a system, be it or not the result of a determination M, gives the 

probability )M',S(P for the determination M'. A first axiom requires these probabilities to 

be well defined. A second axiom allows a finite number of such probabilities to 

                                                 
92

 Ibid., pp. 2 (on Schrödinger), 29 (no subspace axiom);  Schrödinger 1935, p. 555. The purification 

postulate directly implies the no-cloning and the impossibility of bit commitment assumed by CBH. 

 



determine the state. The minimal value of this number is called K; a possible choice of 

the K defining determinations is called a K-determination, and the associated probabilities 

are denoted )M,S( rr Pp  , with Kr ,...,1 . The probability )'M,S(P  may be regarded as 

a function of the vector ),...,,( 21 Kpppp   characterizing the state S and of the vector p' 

characterizing the pure state attached to the determination M'. Since states and 

determinations can be mixed and since probabilities add up by mixing, the probability 

)'M,S(P must be a biaffine function of the vectors p and p'.  

  By a third axiom, there exist reversible transformations between any two pure 

states. This implies the existence of a "totally mixed" state Ŝ for which the 

probability )'M,Ŝ(P is the same for any choice of M'. In the case 2N , the associated 

vector is )2/1,...,2/1,2/1(ˆ p , and it is advantageous to introduce the Bloch vector of 

coordinates 12)ˆ(2  rrrr pppx . The K-determination may be chosen so that the 

biaffine probability function takes the form 

)'A'1(
2

1
)'M,S( xxxxP  , 

wherein A denotes a skew-symmetric matrix. If S and M are associated with the same 

pure state of vector x, we have 1)M,S( P , hence 12 x . In order to prove that 

reciprocally every point of the unit sphere represents a pure state, we need another axiom. 

Hardy relies on the continuity axiom for the transformation group, Dakić and Brukner 

rely on the Comte-Fivel-Zeilinger axiom that two-level systems carry one bit of 

information, Masanes and Müller on the axiom that every tight effect is a possible 

measurement, CDP on the axiom of perfect distinguishabilly of states belonging to the 

boundary of the convex state domain. 

 If our purpose is to show the necessity of quantum mechanics, we should pick the 

most natural of these axioms. Of course, every author believes his axiom to be the most 

natural: Hardy expects the continuity of quantum transformations by analogy with the 

continuity of classical evolutions; Dakić and Brukner believe nature to be made of 

quantum bits; Masanes and Müller regard tight effects as innocent mathematical 

idealizations of concrete measurements ("mathematically well-defined measurements"); 

CDP pride themselves over phrasing their axioms in purely information-theoretic and 

operational terms.  

 Dakić, Brukner, and CDP may be criticized for conflating naturalness with 

information-theoretic simplicity: Why should physics be reduced to transfers of bits? Is 

not there a huge gap between the abstract idea of quantum bits and their physical 

realization? Masanes and Müller similarly confuse mathematical simplicity with physical 

plausibility: Why should their "tight effects" be plausible idealizations of concrete 

measurements? The main advantage of their axiom is that it leads to the desired result 

(the Bloch sphere of pure states) in the most direct manner. We are left with Hardy's 

continuity, whose necessity derives from a more stringent correspondence argument. 

Some liberty in the choice of axioms is nonetheless welcome as a further indication of the 

necessity of the consequences. 

   Once the domain of pure states is known to be the unit sphere, it is easy to prove 

the existence of a transformation that permutes the states x and x'. The invariance of the 



probability function under this transformation requires the vanishing of the skew-

symmetric matrix A and the probability function is simply given by 
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In order to arrive at the Bloch-sphere representation of two-level quantum mechanics, 

there remains to prove that 3K . The axiom that the state of a combined system is 

characterized by the statistics of the determinations of its components leads to the relation 

1 NK , 

which excludes all even values of K. A further restriction is reached by considering the 

combination of two two-level systems. On the one hand, a restriction of Hardy's subspace 

axiom, according to which certain subspaces of states can be regarded as the states of a 

two-level systems, implies the existence of entangled states for the combined system. On 

the other hand, by Dakić and Brukner's argument entangled states are impossible for K 

larger than three. The leftover possibilities are 1K , which corresponds to classical 

probability theory, and 3K , which corresponds to quantum probability theory. Hardy's 

continuity then excludes the first option. For an N-level system, we must have 

12  NK , which is the numbers of degrees of freedom compatible with the 

representation of states by a matrix density in N-dimensional Hilbert space. As we saw, 

the adequacy of this representation can be proved by multiple application of the subspace 

axiom. This ends the proof that Hardy's axioms or the variants by Dakić, Brukner, 

Masanes, and Müller lead to quantum probabilities.  

 A strikingly simple derivation of 3K  for two-level systems is obtained by 

replacing the subspace axiom with two of CDP's assumptions, the existence of entangled 

states (or the stronger postulate of purification) and the pure conditioning axiom. The 

latter axiom, according to which for a combined system in a pure state a determination of 

one subsystem implies a pure state of the other subsystem, is fairly natural. It is a 

particular case of a broader axiom that would require any incomplete measurement of a 

system originally in a pure state to leave the system in a (generally different) pure state.
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In other words, if we have maximal information on a system, we still have maximal 

information on this system after performing an ideal (yet incomplete) measurement. 

Unfortunately, the purification postulate or the resulting existence of entangled states is 

harder to swallow.
94

 To assume this postulate is to admit in the very basis of the theory 

the quantum oddities deplored by Schrödinger. As explained by CDP, the true advantage 

of their approach is its providing direct illuminating links between the now information-

theoretic axioms of quantum mechanics and the various quantum-information theorems 

to which physicists have lately devoted much attention.
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 CDP's charge that other axiomatics always involve uninterpreted mathematical 

assumptions seems excessive.
96

 It certainly applies to Ludwig's old axiomatics, despite 

Ludwig's intention to provide physically justified axioms; it also applies to Masanes and 

Müller's "tight effect" axiom; but it does not truly apply to Hardy's approach because his 

only uninterpreted axiom, the simplicity axiom, is now known to be unnecessary; and the 
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charge has no grip on Dakić and Brukner's axiomatics. Altogether, an improved version 

of Hardy's axiomatics provides a convincing demonstration that the consistent melding of 

the discontinuity of measurement results with the continuity of measurement possibilities 

leads to the density-matrix representation of physical states. 

 There are three limitations to this class of necessity arguments. The first is the 

assumption of a finite value for the maximal number N of distinct measurement 

outcomes. This is not a very serious limitation, because in the laboratory quantum 

processes only involve finite-dimensional Hilbert subspaces (as a consequence of 

effective infrared and ultraviolet cutoffs). The second limitation concerns the evolution of 

systems. So to say, the axiomatics of Hardy and his followers only provides the 

kinematics of quantum mechanics, that is, the representation of physical states. It does 

not tell us how the states evolve, except that probability should be conserved.  In the 

continuous case in which no measurement is performed, the latter property implies the 

existence of a Hamiltonian operator from which the evolution derives. Hardy regards the 

precise expression of the Hamiltonian as a contingent fact to be drawn from experience. 

However, since his axiomatics implicitly involves correspondence arguments, it would 

seem natural to extend kinematic correspondence to dynamic correspondence in order to 

arrive at the usual quantization rules in Heisenberg's or in Schrödinger's form.  

 The third and most fundamental limitation to a rationalist exploitation of Hardy's 

axiomatics is inherent in the assumption of strictly discrete (ideal) measurement 

outcomes. There is no direct empirical difference between an isolated discrete value and a 

very narrow continuous spread of values around a central value. Yet the two options 

seem lead to very different intuitions of the possible correlations between successive 

measurements: only in the first option does one expect well-defined probabilities for 

these correlations; in the second option, the fine structure of the spectrum of possible 

value should naturally affect the correlations. In sum, Hardy's axiomatics shows the 

necessity of quantum mechanics to the extent that the discontinuity of measurement 

results is judged necessary. Historically, the latter necessity has sometimes been regarded 

as empirical, for instance as a consequence of the discreteness and universality of atomic 

spectra; and sometimes as intertheoretical, as the only escape from the paradoxes 

regarding the interaction between radiation and a large assembly of atoms (infrared 

catastrophe). These arguments in favor of discontinuous measurement outcomes are not 

as compelling as the deduction of quantum mechanics from this discontinuity in 

axiomatics à la Hardy. In the present state of this approach, we should probably content 

ourselves with the insight that quantum discontinuity, if it is admitted as a fundamental 

feature of the microworld and if it is complemented with natural axioms concerning the 

relation between micro- and macro-world, necessarily leads to quantum mechanics as we 

know it.  

 We are now in a position to compare the Hardy kind of axiomatics with quantum 

logic. A first difference is the manner in which non-classicality is introduced. In quantum 

logic, the classical reference is the Boolean logic of binary measurement; what causes 

departure from that logic is the admission of incompatible measurements. In Hardy 

axiomatics, the classical reference is the classical theory of probabilities of discrete 

events; what causes departure from this theory is the continuity of measurement 

possibilities. The classical reference being different, it would not make much sense to say 

that one approach better justifies departure from classicality than the other. Rather, we 



should compare the manner in which the two approaches purport to derive quantum 

mechanics.  

 Let us first compare the crucial ingredients of these derivations. In the quantum 

logic approach, the most evident quantum-like ingredient is the assumption of 

incompatible measurements; in the Hardy approach, it is the discreteness of 

measurements outcomes combined with the continuity of measurement possibilities. At 

first glance, quantum logic seems more economic, since incompatible measurements are 

easier to conceive than an intrinsic discontinuity of physical quantities. This difference is 

tenuous, however. If we believe in Bohr's intuition of quantum discontinuity, the 

discreteness of physical quantities and the incompatibility of measurements both result 

from the existence of the quantum action: a measurement generally implies a finite and 

uncontrollable perturbation of its object, perturbation that randomly affects the result of a 

subsequent measurement of a correlated object. Moreover, it is doubtful that quantum 

logic can truly dispense with an assumption of discreteness. As we saw, it is only in the 

discrete, finite-dimensional case that its axioms are natural enough. 

 Another difference in the two kinds of derivations of quantum mechanics is the 

nature of the employed mathematics. For the average physicist, the mathematics of 

quantum logic is exotic as it involves deep interconnections between lattice theory, 

projective geometry, and generalized Hilbert spaces. The mathematics of Hardy 

axiomatics is simpler on average. When it gets more difficult, it is in its reliance on the 

theory of Lie group, which is abundantly used by modern theoretical physicists. By 

restricting itself to purely logical axioms, quantum logic has raised the mathematical 

stakes much higher than Hardy axiomatics. 

 A last and most decisive difference is the degree in which the two approaches 

succeed in deriving quantum mechanics. In this respect, quantum logic is losing because 

it allows for generalizations of quantum mechanics in which the field of complex 

numbers is replaced by other fields. The fuller success of Hardy axiomatics seems to 

result from its reliance of axioms regarding composite systems and subsystems. The 

weaker achievement of quantum logic seems to result from the lack of any such axiom in 

its (original) foundation. This inferiority is not a sufficient reason to condemn quantum 

logic: if may well continue to be productive in the golden triangle of mathematics, 

physics, and philosophy. Yet, globally judging from the number and naturalness of the 

axioms, from the accessibility of the mathematics, and from the fullness of the 

deductions, Hardy axiomatics appears to be a better rational derivation of quantum 

mechanics.  

 

 

Conclusions 

 

The history of quantum theory is a first remedy for the mathematical abruptness of 

standard quantum mechanics. It provides an understandable genesis of both the matrix 

and the wave form of this theory. However, the historical development is too complex 

and two impregnated with empirical arguments to be regarded as a rational justification. 

It only gives hints at such justifications. A first hint is Bohr's correspondence principle, 

whose historical success suggests that the asymptotic agreement of classical and quantum 

theory should be a good guide to imagine reasonable axioms for quantum mechanics. 



Another hint is the general feeling that a melding of continuity and discontinuity, 

properly orchestrated by the correspondence principle, should lead to quantum 

mechanics. 

 The first hint found spectacular confirmation in Lichnerowicz's and Gutt's proofs 

that the phase-space formulation of quantum mechanics is the unique (up to an 

isomorphism) one-parameter deformation of the Poisson algebra of classical mechanics. 

This result is purely mathematical. It does not imply that the mathematically generated 

deformation should be a physical theory. However, this deformation is constructed so as 

to possess a Lie algebra of infinitesimal evolutions. If we share Poincaré's belief in the 

synthetic a priori character of transformation groups, this makes the deformation a good 

candidate for being some sort of dynamics. Compared to other arguments for the 

necessity of quantum mechanics, the deformation approach has an important advantage: 

it does not only imply the quantum-mechanical characterization of states and their 

evolution, it also gives the expression of the Hamiltonian and other observables. 

 The other hint from history, that quantum mechanics should result from a 

correspondence-guided melding of continuity and discontinuity, is confirmed by Hardy's 

axiomatics, which generates the matrix-density representation of physical states and their 

unitary evolution by postulating discrete measurement outcomes and continuous 

variations of the kind of measurement. The latter principle of continuity, and most of 

Hardy's other axioms are implicit consequences of some correspondence between 

classical and quantum theory. The least convincing of Hardy's axioms, the one requiring 

the lowest value for the number of degrees of freedom associated to a given dimension, is 

now known to derive from his other axioms. The theorists who corrected this defect 

moved toward a fuller information-theoretic expression of the axiom. Although this 

tendency has the advantage of bringing quantum mechanics closer to its applications to 

the processing of information, it diminishes the necessity of the axioms by severing them 

from the correspondence arguments that were available in Hardy's original formulation.  

 In the popular perception of quantum mechanics, its main peculiarities are 

quantum discontinuity (discrete character of physical quantities that used to be 

continuous), the existence of incompatible measurements (uncertainty relations), and the 

existence of entangled states (in Schrödinger's sense). Hardy's axiomatics postulates 

quantum discontinuity; and the information-theoretic axiomatics of Chiribella, d'Ariano, 

and Perinotti postulates entangled states through their principle of purification. A much 

earlier kind of axiomatics, the quantum logic initiated by Neumann and Birkhoff, begins 

with incompatible measurements. Its focus on experimental Yes-No questions makes it 

an impoverished logic based on a non-distributive lattice from a formal point of view. Its 

elegance lies in the economy of its presuppositions and in the power of the mathematics 

deployed to derive a generalized Hilbert-space representation of the lattice of 

propositions. Its main defects, compared to Hardy's approach, are the required level of 

mathematical competence and the failure to single out the Hilbert-space representation 

among all representations compatible with the basic lattice structure. The axioms of 

quantum logic are most natural in the finite-dimensional case, and a bit contrived in the 

infinite-dimensional case developed by Piron and others. Once completed with a 

definition of states through the statistics of binary tests, they lead to the matrix-density 

representation of states and to their unitary evolution if the Hilbert-space representation 

of the logical lattice is selected. 



 In order to appreciate the kind of necessity of the various axiomatics encountered 

in this essay, one must examine the nature of the primitive notions needed to formulate 

the axioms. In the case of quantum logic, the basis notion is that of a repeatable binary 

test (Piron's "measurements of the first kind"). The theory is constructed from this highly 

idealized notion, without any information regarding the concrete realization of the tests. 

There is little doubt, however, that the existence of such tests is a minimal requirement 

about the possibility of experimentation: We must somehow be able to determine the 

properties of a system through reliable tests, and every test is evidently traceable to a set 

of binary tests; a clear cut answer to the latter kind of test is a plausible idealization. As 

long as the axioms regarding the combination of binary tests are physically reasonable, 

their consequences seem quite necessary. This extreme generality is the main attraction 

of quantum logic. It also is its main deficiency. Even after being completed by a 

statistical definition of states in Mackey's manner, the theory does not give any concrete 

instructions about how to perform tests and measurements. It only suggests that single 

measurements should correspond to mutually compatible tests that generate a 

decomposition of the identity as a sum of orthogonal projectors. In order to associate a 

measurement value to a given projector, further considerations are needed, perhaps 

symmetry considerations (in particular, the Hamiltonian is an observable related to the 

uniformity of time) or correspondence arguments. So to say, quantum logic is an empty 

shell waiting for an imbedded theory of measurement.
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 This state of affairs brings out an unusual aspect of the relation between 

mathematics and physics. According to Helmholtz and Poincaré, the possibility of 

measurement (in a strong sense including the concrete addition of quantities) is 

responsible for much of the mathematical structure found to be necessary in formulating 

physical theories. In quantum logic, the basic notions do not include measurement; they 

only include binary tests. Interestingly, the specific lattice structure of these tests implies 

much mathematics, including generalized Hilbert spaces, which are much more advanced 

mathematical constructs than the real numbers associated with ideal measurement. This 

mathematics does not imply numbers determinable by experiment. Such numbers only 

occur at the probabilistic stage at which the statistical correlation between successive 

tests is defined. Measurement stricto sensu remains irrelevant until the quantum logic 

shell is filled with appropriate metric notions. In a neo-Kantian reading, quantum logic 

may be seen as a very basic precondition of experiment, prior to the measurability 

conditions expressed in Helmholtz's doctrine. 

  At first glance, Hardy's axiomatics does not seem to share this pre-metric quality 

of quantum logic, since it presupposes "single shot measurements" with definite 

(discrete) numerical outcomes. In fact, the basic notion of this theory is that of states 

defined through the probabilities of the various measurement outcomes. This difference 

with quantum logic is not so great, however, because Hardy's measurements are only 

defined in abstracto, without any prescription for their concrete realization. A more 

significant difference stems from Hardy's introducing the statistical concept of state at the 

very beginning of his theory. This difference implies a different sort of necessity for the 

axioms in the two approaches. Whereas in quantum logic necessity is inherent in the 

logic of tests, in Hardy's theory it derives from the correspondence arguments that 

implicit sustain the axioms. As the latter kind of necessity seems vaguer than the former, 
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one may be tempted to conclude that quantum logic, despite its more difficult 

mathematics and its less determined conclusions, better shows the necessity of quantum 

mechanics than axiomatics à la Hardy. This would be a hurried conclusion, however, 

because both approaches in the end need correspondence arguments to concretely 

determine what should be measured on quantum systems. 

 In this essay, I have given much attention to the degree in which various 

developments can pass for rational derivations of quantum mechanics. This does not 

mean, however, that the actors of these developments truly had rationalist ambitions. 

Birkhoff and Neumann define the aim of their foundational paper as "to discover what 

logical structure one may hope to find in physical theories which, like quantum 

mechanics, do not conform to classical logic." Although they occasionally ask for "a 

plausible physical motivation" for their axioms, they seem to be more concerned with 

mathematical fertility. Mackey's main concern clearly is clean axiomatization in Hilbert's 

sense. Other authors profess an operational approach in which the deployed mathematics 

should be mostly dictated by idealized operations. Yet they do no place the necessity of 

the operational axioms at the top of their agenda. Piron and Jauch purport to define the 

most adequate language of quantum theory. They spend relatively little time justifying 

their axioms. Hardy and his followers insist on the "natural" or "reasonable" character of 

their axioms in the context of probability theory of information theory. Although they 

probably mean this naturalness to imply a kind of necessity, it should be distinguished 

from applicability to physical systems.
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 To sum up, we have three sorts of arguments for the necessity of quantum 

mechanics: historical, mathematical, and operational. The historical ones are too 

impregnated with empirical knowledge to be regarded as rational; the mathematical ones 

are purely rational but they leave the physical significance of the deduced theory open; 

the operational ones (quantum logic, or probabilistic states) come closest to rational 

deductions of quantum mechanics, although their inventors prudently avoided to claim so 

much, and although some of the basic assumptions, especially the discreteness of 

measurement outcomes and the existence of incompatible measurements remain largely 

empirical. With this concession, one cannot help being impressed by the fact that these 

assumptions, together with basic preconditions of experience and correspondence 

arguments, lead to the Hilbert-space formalism of quantum mechanics. We thus 

understand why microphysics needs a kind of mathematics earlier believed to belong to 

the pure mathematician. We also become convinced that quantum mechanics is the only 

plausible generalization of classical mechanics that takes into account the basic atomicity 

of physical phenomena.  
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